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Introduction

Outline of the presentation

Introduction and motivation
Earlier literature

o Classification of methods
e Computational complexity

@ Exclusion method

o Exclusion oracle tells if Nash equilibrium is NOT in the region
e Subdivision scheme and region selection important

Numerical results
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Normal-form game with n players and m actions
Nash equilibrium p*: no player can gain by deviating

e-equilibrium: u;(a, p* ;) < w;i(p*) +¢€ Vi,a € A;

How do you compute an (approximative) equilibrium?



Introduction

Introduction (2)

Two-player vs. multiplayer games

Multiplayer games — nonlinear polynomial equations
Correlated equilibrium? Zero-sum game?

Find one vs. all equilibria

Root of regret r(p) = 0; piecewise differentiable polynomial
Regret of action a: r;(a,p) = u;(a,p—;) — u;(p)

Regret of player i: r;(p) = gé%(n(a,p)

Regret in the game: r(p) = mlaxri(p)



Earlier methods
Classification of methods

e Homotopy (path-following) methods: trace equilibrium
from easy, artificial game to the original game.
Govindan and Wilson 2003/4, Herings and Peeters 2005,
Turocy 2005, Lemke and Howson 1964

@ Polynomial equation solving and support enumeration:
Porter et al. 2008, Lipton and Markakis 2004

@ Function minimization and optimization formulations:
Sandholm et al. 2005, Chatterjee 2009, Buttler and Akchurina
2013, Borycka and Juszczuk 2013

o Simplicial subdivision methods:
van der Laan, Talman, van der Heyden 1970-80s

e Uniform-strategy enumeration methods:
Lipton et al. 2003, Hemon et al. 2008, Babichenko et al. 2014



Earlier methods

Gambit algorithms on GAMUT games

Computation times (sec) and instances not solved (percentage)

Game class gnm ipa enumpoly simpdiv liap logit
Bertrand oligopoly 0.05 (30) | 0.05(75) | 0.04 (50) | 0.04 (0.4) | 0.24 (99) | 0.06
Bidirectional LEG 0.09 (0.3) | 0.05(58) | 0.84 (1) 0.04 (2) 0.24 (99) | 0.06 (0.1)
Collaboration 0.24 (0.1) | 0.04 3.3 (50) 0.05 0.34 (99) | 0.06 (0.3)
Congestion 0.05 (0.2) | 0.05(85) | 0.05(0.6) | 0.04 (0.7) | 0.21(100) | 0.05
Coordination 0.24 (2) 0.05 27 (8) 0.04 0.37 (99) | 0.05 (0.3)
Covariant r=0.9 0.19 (1) 0.06 (87) | 39 0.04 (20) | 0.31(99) | 0.06 (0.3)
Covariant r=-0.5 0.13 (3) 0.05 (94) | 36 0.04 (20) | 0.31(100) | 0.05 (1)
Dispersion 1.18 (1) 0.04 10 0.04 0.44 (93) 0.05
Majority voting 0.77 (25) 0.05 0.32 0.04 0.24 (100) 0.06 (1)
Minimum effort 0.06 0.04 1.7 0.04 0.26 (98) 0.05 (0.1)
N player chicken (*) 0.05 (0.2) 0.04 (52) 0.04 0.04 0.07 (67) 0.05 (0.2)
N player PD (*) 0.04 0.04 (99) | 0.04 0.04 0.05 (22) 0.04
Polymatrix 0.06 (1) 0.04 (79) 0.04 (50) 0.06 (0.4) 0.3 (92) 0.05 (0.4)
Random compound (*) 0.04 0.04 (37) 0.05 0.04 0.08 (56) 0.05
Random LEG 0.05 (1) 0.04 (59) 8.1(2) 0.05 (4) 0.24 (99) 0.06
Random graphical 0.08 (3) 0.04 (96) 6.3 (6) 0.10 (17) 0.31 (99) 0.06 (0.3)
Traveler's dilemma 0.04 0.06 11 0.04 0.33 (98) 0.06
Uniform LEG 0.07 (0.4) | 0.05(55) | 0.04 (17) | 0.04 (10) | 0.23(99) | 0.06

NO Gambit algorithm can solve ALL instances.



Complexity results
Earlier results

@ Computing Nash is PPAD-complete in two-player general-sum
games (Chen, Deng, Teng 2006/9)

@ So is approximative equilibrium (Daskalakis 2013, Rubinstein
2016)

@ Polynomial Parity Arguments on Directed graphs
(Papadimitriou 1991)

@ PPAD is believed to be hard

e Computing (approximative) Nash is FIXP-complete in
multiplayer games (Etessami and Yannakakis 2010)



Complexity results
Earlier results: uniform strategies

e-equilibrium in “small” supports using k-uniform strategies
k-uniform: probabilities are all with denominator &
Babichenko et al. 2014: k = O((logm + logn — log€) /€%)
Number of profiles: m™ and (k + 1)"™
lfn=m=3,e=10"3 k> 107 and 10*? points
O(m'°e™), O((logn)™), O(((log1/e)/e?)¢) (best in m)

We improve n and e: O(c™), O(1/€), ¢ constant (best in n)



Complexity results

Earlier results: solving algebraic equations

o Lipton and Markakis 2004: algebraic numbers and finite
representation

Not only approximative but close to actual Nash equilibrium

Polynomial in log 1/¢, n™™, L (best in ¢)

@ L is maximum bit size of payoff data



Exclusion method

Main idea behind our method: exclusion of regions

regret function

v

No Nash Nash
here

@ For any point with positive regret, the solution cannot be near
this point

@ Based on the function being continuous and having maximum
value of derivative



Exclusion method

Exclusion oracle

@ How to determine the maximum derivative (M) of piecewise
polynomial?

p°-centered ball of radius s cannot contain 0-Nash if
ri(p°) > s - M; for some i

If r;(p°) > €, for some i € N, then region size d < €/2M,; is small
enough to exclude p°.




Exclusion method

Subdivision scheme
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Exclude balls? Remaining regions difficult to keep track
How to encode the regions? Simplexes?
We use hyperrectancles (boxes)

Easy to store min and max values in each dimension

Split using bisection, divide along the longest edge



Exclusion method

Region selection heuristic

Select a region that is likely to contain Nash

Compute ranking function based on available function values
We use g(R,p®) = max; r;(p")/(d(R) - M;(p°))

R region, d its diameter, M;(p") maximum derivative of regret

Favor big regions with low regret and big derivatives



Exclusion method

Exclusion method using bisection

Repeat until e-Nash found
1. Select the box with minimal value of ranking function g

2. Compute regret r(p°). If regret small enough, e-Nash found.
Else either exclude the box (regret is large), or bisect it along
the longest edge.



Exclusion method
Computational complexity

e O(c"), O(c™), O(1/€°)

@ Exponential both in n and m

Any bisection method excludes all points with r(p) > € within
plElees 25T iterations.




Results

Our method vs. enumeration of k-uniform profiles

Game class Time (sec) 95% bound Time Alg. 2 NS (%) NS Time NS e
Bertrand oligopoly 13.7 19.3 0.01 0 - -
Bidirectional LEG 159 337 0.013 0 - -
Collaboration 2.8 37 0.0009 0 - -
Congestion 29 71 0.027 0 - -
Coordination 1.6 23 0.0009 0 - -
Covariant r=0.9 55 8.4 0.006 0 - -
Covariant r=-0.5 95 202 80 16 434 0.003
Dispersion 31 52 0.01 0 - -
Majority voting 5.6 15.6 0.0008 0 - -
Minimum effort 0.014 0.015 0.0008 0 - -
N player chicken (*) 0.016 0.018 0.0008 0 - -
N player PD (*) 0.005 0.005 0.0008 0 - -
Polymatrix 172 358 27.2 7 373 0.003
Random compound (*) 0.014 0.015 0.001 0 - -
Random LEG 880 1970 0.02 0 - -
Traveler's dilemma 0.01 0.01 0.008 0 - -
Uniform LEG 793 1850 0.02 0 - -

Our method is the only one to solve all instances —
slowly but surely.



Results

Dependency in € in random games, 3/4/5-player games

10 1072 1073 107
Eerror e




Conclusion

Computation of equilibrium is difficult

Fast algorithms and complete algorithms are different
New approach for computing equilibrium

Best upper bound in number of players n

Development of new exclusion oracles, subdivision schemes
and ranking functions

Better bounds for derivatives of polynomials (e.g., Markov
inequality 1889)

Hybrid schemes using different methods together

Conclusion



Conclusion

Remember to live without regret...

Thank you for your attention! Any questions?
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