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Introduction

Outline of the presentation

@ lllustrative example

e Shows how players may randomize in repeated games
e Convert into various normal-form games by using different
continuation payoffs

@ Abreu-Pierce-Stacchetti fixed-point characterization
o Extension to behavior strategies
@ Self-supporting sets to find equilibria in behavior strategies

@ Comparison between pure, behavior and correlated strategies



Introduction

The model

Infinitely repeated game

Stage game with finitely many actions

°
°

@ Discounting (possibly unequal discount factors)

@ Behavior strategies (randomization and history-dependent)
°

Players observe realized pure actions (not randomizations)



Introduction

The model (2)

Finite set of players N = {1,...,n}

Finite set of pure actions A;, 1 € N, A = X;eNA4;

Mixed action ¢;(a;) > 0, profile g = (¢1,...,qn)

Probability of pure action profile a € A: m4(a) = [];cn gj(a;)
Stage game payoff u;(q) = >, c 4 ui(a)mg(a)

Histories H* = A" for stage k>0, H =2

Behavior strategy o; : H — Q);

Discounted payoff U;(c) = E [(1 — ;) 32 0Fuf(o)]



Introduction
Payoffs from stage games
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PD Example

Prisoner’s Dilemma

3.3 (a) | 0,4 (0)
20 (c) | 1,1 (d)

@ What are equilibria in pure, behavior and correlated strategies?
e Common discount factor 6 = 1/3

@ The pure action profiles are called a, b, ¢ and d



PD Example

Prisoner’s Dilemma (2)

33 | 1/33 7/37/3]1/33
3,1/3 | 5/35/3 31/3 | 11

@ Left: No unilateral deviation, a and d followed by cooperation,
b and ¢ by punishment

@ Right: d*° after all pure action profiles



PD Example

Prisoner’'s Dilemma: Pure strategies

@ Berg and Kitti (2010): elementary subpaths d,aa,ba,be,ca,ch

@ Equilibrium paths are compositions of the elementary
subpaths, e.g., d”(bc)3a™>



PD Example

Prisoner’'s Dilemma: Correlated strategies

0 % % % {
0 1 2 3 4
@ All reasonable (feasible and individually rational) payoffs




PD Example

Prisoner’'s Dilemma: Behavior strategies

0 % % % {
0 1 2 3 4
@ Union of rectangle (1,3) x (1,3) and two lines

@ How do we get these payoffs?



PD Example
Prisoner’s Dilemma: Behavior strategies (2)

33[04 7/3.7/31/33
40 [ 1,1 11/31 | 1,1

Find follow-up strategies and continuation payoffs so that
payoffs correspond to the game on right

Action profiles a, b and d are followed by d> (SPEP) and ¢ is
followed by a (SPEP)

ad*: (1 —-106)(3,3)+0(1,1) = (7/3,7/3)
ca™: (1-6)(4,0)+4(3,3) = (11/3,1)

@ Produces the red lines of payoffs



PD Example
Prisoner's Dilemma: Behavior strategies (3)

33|04 33|13
40|11 31111

Find continuation payoffs: a (3,3), b (3,1), ¢ (1,3), d (1,1)
(1-9)(0,4)4+46(3,1) =(1,3)

a is followed by a®°, d is followed by d*°

b is followed by (cb)>:

(1—6)(1—6%)71[(4,0) 4+ 6(0,4)] = (3,1)

e No randomization needed (not as easy in general!)

@ Produces the green rectangle of payoffs



Characterization
Characterization of Equilibria a la APS

Carrier of mixed action Car(q;) = {a; € Ailgi(a;) > 0}

Most profitable deviation d;(q) = max  u;(al,q_;).
ai€eA\Car(g;)

Smallest payoff from a set p;(W) = min{w;, w € W}

A pair (¢, w) is admissible with respect to (w €)W if

(1 = 8)ui(q) + dw; > (1 = 8)di(q) + pi(W)

Each a € Car(q) may follow by different continuation play

Continuation payoff w = Z z(a)my(a), z(a) € W
acCar(q)



Characterization

Characterization (2)

e Stage game payoffs us(a) = (1 — d)u(a) + dz(a)
e Set of all equilibrium payoffs M (x) of stage game with @
@ V is the set of subgame-perfect equilibrium payoffs

Theorem

V' is the largest fixed point of B:
w=Bw)= J M),
zeWIAI

where (q,w) admissible, w formed by x, and q equilibrium of stage
game with payoffs x.

v



Characterization
Comparison to Pure Strategies

o V' is the set of pure-strategy subgame-perfect equilibrium
payoffs

Theorem (Abreu-Pearce-Stacchetti 1986,/1990)

VP is the largest fixed point of B :

w =BP(w U U (1 —d)u(a) + dw,
a€A weCy (W)

where Co,(W) = {w € W s.t. (a,w) admissible}.




Characterization

Comparison to Pure Strategies (2)

Complexity of fixed-point is higher

Structure of equilibria different

In pure strategies, enough to have high enough continuation
payoff

@ Randomization requires exact continuation payoffs



Self-supporting sets

Self-supporting sets

S is self-supporting set if S C M(z) for € RI4! and

e z(a) € S for a € Car(q(s)),

o if player i plays an action a; outside Car(q(s);) (an
observable deviation), while a_; € Car(q(s)—;), then
xi(@;,a—;) is player i's punishment payoff.

@ if at least two players make an observable deviation, then the
continuation payoff is a predetermined equilibrium payoff.

e Strongly self-supporting if z(a) € S for all a € A



Self-supporting sets

Self-supporting sets (2)

@ Required continuation payoffs are within the set itself

e Easy way to produce (subsets of) equilibrium payoffs

Theorem (Monotonicity in 4)

If S is self-supporting set for ¢,
e S is convex,
o us(a) = (1 —d)u(a) + dz(a) € S for all a € Car(q(s)), and
e p;(V(6)) is not increasing in ¢ for all i € N.

Then there exists a self-supporting set S’ O S for §' > 6.




Results

Results: Prisoner’s Dilemma

a,al b,c
¢,b | 0,0

withec>a>0>b

The rectangle [0, a] x [0, a] is a subset of the subgame-perfect
equilibrium payoffs for

5Zmax{c_a D_b].

c—0'a—"b




Results

Results: Nonmonotonicity

Theorem (Nonmonotonicity of payoffs)

The set of subgame-perfect equilibrium payoffs are not monotone
in the discount factor in the following symmetric game:

3,3 —35,4 [-10,-10 ] 1,-10
4,—% 1, —10,-10 | —10,—10
-10,1 [ -10,-10 | $,—-{ | —10,-10

—-10,—10 | —10,-10 | -10,-10 | —15, 5

@ [1,3] x [1,3] is a subset of the subgame-perfect equilibrium
payoffs when 6 = 1/3 but not for a higher discount factor

@ Rectangle gets contracted and relies on outside payoff



Results
Results: Comparison of pure, mixed and correlated

o Feasible payoffs VI = co(v € R" : 3g € A s.t. v = u(q))
o Reasonable payoffs V*(§) = {v € VT, v; > p;(V(§)), i € N}
o Critical discount factor

M =1inf {5: V(&) = V*(8'),¥0' > 6}

For all 6, VP (5) C VM(85) C VE(6).

IFpP(VP(8)) = p(V(8')) = pC(VE(8)) for all
6" > min [5P, (5M,6C], then it holds that 6 > 6™ > §¢.




Results
Results: Comparison in Prisoner's Dilemma

In symmetric Prisoner’s Dilemma, it holds that

c—ab—b]zéc

5P = oM c-b

:a+c—b—0

> max | ——, ——
[c—fa—b

when b + ¢ < 2a, and otherwise

2(c—0) c—b 0—b
5P: M _ :50
b+ 3c— 40 2(c—a)>c—a ’




Conclusion

Conclusion

Characterization of equilibria in behavior strategies
Self-supporting sets offer easy way to find behavior strategies

It is possible to compare equilibria under different assumptions

Open problem: punishment strategies in pure and behavior
strategies
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Thank you! Any questions?



	Introduction
	PD Example
	Characterization
	Self-supporting sets
	Results
	Conclusion

