Mixed-Strategy Subgame-Perfect Equilibria in Repeated Games

Kimmo Berg
Department of Mathematics and Systems Analysis
Aalto University, Finland
(joint with Gijs Schoenmakers)

July 8, 2014

Outline of the presentation

- Illustrative example
 - Shows how players may randomize in repeated games
 - Convert into various normal-form games by using different continuation payoffs
- Abreu-Pierce-Stacchetti fixed-point characterization
 - Extension to behavior strategies
- Self-supporting sets to find equilibria in behavior strategies
- Comparison between pure, behavior and correlated strategies

The model

- Infinitely repeated game
- Stage game with finitely many actions
- Discounting (possibly unequal discount factors)
- Behavior strategies (randomization and history-dependent)
- Players observe realized pure actions (not randomizations)

The model (2)

- Finite set of players $N = \{1, \dots, n\}$
- Finite set of pure actions A_i , $i \in N$, $A = \times_{i \in N} A_i$
- Mixed action $q_i(a_i) \ge 0$, profile $q = (q_1, \dots, q_N)$
- Probability of pure action profile $a \in A$: $\pi_q(a) = \prod_{j \in N} q_j(a_j)$
- Stage game payoff $u_i(q) = \sum_{a \in A} u_i(a) \pi_q(a)$
- Histories $H^k=A^k$ for stage $k\geq 0$, $H^0=\varnothing$
- Behavior strategy $\sigma_i: H \mapsto Q_i$
- Discounted payoff $U_i(\sigma) = \mathbb{E}\left[(1-\delta_i)\sum_{k=0}^\infty \delta_i^k u_i^k(\sigma)\right]$

Payoffs from stage games

Prisoner's Dilemma

- What are equilibria in pure, behavior and correlated strategies?
- Common discount factor $\delta = 1/3$
- ullet The pure action profiles are called a, b, c and d

Prisoner's Dilemma (2)

3,3	1/3,3
3,1/3	5/3,5/3

7/3,7/3	1/3,3
3,1/3	1,1

- ullet Left: No unilateral deviation, a and d followed by cooperation, b and c by punishment
- ullet Right: d^{∞} after all pure action profiles

Prisoner's Dilemma: Pure strategies

- Berg and Kitti (2010): elementary subpaths d,aa,ba,bc,ca,cb
- Equilibrium paths are compositions of the elementary subpaths, e.g., $d^7(bc)^3a^\infty$

Prisoner's Dilemma: Correlated strategies

• All reasonable (feasible and individually rational) payoffs

Prisoner's Dilemma: Behavior strategies

- Union of rectangle $(1,3) \times (1,3)$ and two lines
- How do we get these payoffs?

Prisoner's Dilemma: Behavior strategies (2)

- Find follow-up strategies and continuation payoffs so that payoffs correspond to the game on right
- Action profiles a, b and d are followed by d^{∞} (SPEP) and c is followed by a^{∞} (SPEP)
- ad^{∞} : $(1-\delta)(3,3)+\delta(1,1)=(7/3,7/3)$
- ca^{∞} : $(1-\delta)(4,0) + \delta(3,3) = (11/3,1)$
- Produces the red lines of payoffs

Prisoner's Dilemma: Behavior strategies (3)

$$\begin{array}{c|c} 3,3 & 0,4 \\ \hline 4,0 & 1,1 \end{array} \Rightarrow \begin{array}{c|c} 3,3 & 1,3 \\ \hline 3,1 & 1,1 \end{array}$$

- Find continuation payoffs: a (3,3), b (3,1), c (1,3), d (1,1)
- $(1 \delta)(0, 4) + \delta(3, 1) = (1, 3)$
- a is followed by a^{∞} , d is followed by d^{∞}
- b is followed by $(cb)^{\infty}$: $(1 \delta)(1 \delta^2)^{-1}[(4, 0) + \delta(0, 4)] = (3, 1)$
- No randomization needed (not as easy in general!)
- Produces the green rectangle of payoffs

Characterization of Equilibria à la APS

- Carrier of mixed action $Car(q_i) = \{a_i \in A_i | q_i(a_i) > 0\}$
- Most profitable deviation $d_i(q) = \max_{a_i' \in A_i \setminus Car(q_i)} u_i(a_i', q_{-i}).$
- Smallest payoff from a set $p_i(W) = \min\{w_i, w \in W\}$
- \bullet A pair (q,w) is admissible with respect to $(w\in)W$ if

$$(1 - \delta)u_i(q) + \delta w_i \ge (1 - \delta)d_i(q) + \delta p_i(W)$$

- Each $a \in Car(q)$ may follow by different continuation play
- Continuation payoff $w = \sum_{a \in Car(q)} x(a)\pi_q(a), \ x(a) \in W$

Characterization (2)

- Stage game payoffs $\tilde{u}_{\delta}(a) \doteq (1 \delta)u(a) + \delta x(a)$
- ullet Set of all equilibrium payoffs M(x) of stage game with $ilde{u}$
- ullet V is the set of subgame-perfect equilibrium payoffs

Theorem

V is the largest fixed point of B:

$$W = B(W) = \bigcup_{x \in W^{|A|}} M(x),$$

where (q,w) admissible, w formed by x, and q equilibrium of stage game with payoffs x.

Comparison to Pure Strategies

 \bullet ${\cal V}^{P}$ is the set of pure-strategy subgame-perfect equilibrium payoffs

Theorem (Abreu-Pearce-Stacchetti 1986/1990)

 ${\cal V}^P$ is the largest fixed point of ${\cal B}^P$:

$$W = B^{P}(W) = \bigcup_{a \in A} \bigcup_{w \in C_{a}(W)} (1 - \delta)u(a) + \delta w,$$

where $C_a(W) = \{w \in W \text{ s.t. } (a, w) \text{ admissible}\}.$

Comparison to Pure Strategies (2)

- Complexity of fixed-point is higher
- Structure of equilibria different
- In pure strategies, enough to have high enough continuation payoff
- Randomization requires exact continuation payoffs

Self-supporting sets

Definition

S is self-supporting set if $S\subseteq M(x)$ for $x\in\mathbb{R}^{|A|}$ and

- $x(a) \in S$ for $a \in Car(q(s))$,
- if player i plays an action \tilde{a}_i outside $Car(q(s)_i)$ (an observable deviation), while $a_{-i} \in Car(q(s)_{-i})$, then $x_i(\tilde{a}_i, a_{-i})$ is player i's punishment payoff.
- if at least two players make an observable deviation, then the continuation payoff is a predetermined equilibrium payoff.
- Strongly self-supporting if $x(a) \in S$ for all $a \in A$

Self-supporting sets (2)

- Required continuation payoffs are within the set itself
- Easy way to produce (subsets of) equilibrium payoffs

Theorem (Monotonicity in $\delta)$

If S is self-supporting set for δ ,

- S is convex,
- $\tilde{u}_{\delta}(a)=(1-\delta)u(a)+\delta x(a)\in S$ for all $a\in Car(q(s))$, and
- $p_i(V(\delta))$ is not increasing in δ for all $i \in N$.

Then there exists a self-supporting set $S' \supseteq S$ for $\delta' > \delta$.

Results: Prisoner's Dilemma

with
$$\mathfrak{c} > \mathfrak{a} > \mathfrak{d} > \mathfrak{b}$$

Theorem

The rectangle $[\mathfrak{d},\mathfrak{a}]\times [\mathfrak{d},\mathfrak{a}]$ is a subset of the subgame-perfect equilibrium payoffs for

$$\delta \geq \max \left[\frac{\mathfrak{c} - \mathfrak{a}}{\mathfrak{c} - \mathfrak{d}}, \frac{\mathfrak{d} - \mathfrak{b}}{\mathfrak{a} - \mathfrak{b}} \right].$$

Results: Nonmonotonicity

Theorem (Nonmonotonicity of payoffs)

The set of subgame-perfect equilibrium payoffs are not monotone in the discount factor in the following symmetric game:

3,3	$-\frac{1}{10}, 4$	-10, -10	1, -10
$4, -\frac{1}{10}$	1,1	-10, -10	-10, -10
-10, 1	-10, -10	$\frac{43}{10}, -\frac{1}{10}$	-10, -10
-10, -10	-10, -10	-10, -10	$-\frac{1}{10}, \frac{43}{10}$

- $[1,3] \times [1,3]$ is a subset of the subgame-perfect equilibrium payoffs when $\delta=1/3$ but not for a higher discount factor
- Rectangle gets contracted and relies on outside payoff

Results: Comparison of pure, mixed and correlated

- Feasible payoffs $V^\dagger = co\left(v \in \mathbb{R}^n: \exists q \in A \text{ s.t. } v = u(q)\right)$
- Reasonable payoffs $V^*(\delta) = \left\{v \in V^\dagger, \ v_i \geq p_i(V(\delta)), \ i \in N \right\}$
- Critical discount factor

$$\delta^M = \inf \left\{ \delta : V(\delta') = V^*(\delta'), \forall \delta' \ge \delta \right\}$$

Theorem

For all δ , $V^P(\delta) \subseteq V^M(\delta) \subseteq V^C(\delta)$.

Theorem

If $p^P(V^P(\delta')) = p(V(\delta')) = p^C(V^C(\delta'))$ for all $\delta' \geq \min\left[\delta^P, \delta^M, \delta^C\right]$, then it holds that $\delta^P \geq \delta^M \geq \delta^C$.

Results: Comparison in Prisoner's Dilemma

Theorem

In symmetric Prisoner's Dilemma, it holds that

$$\delta^P = \delta^M = \frac{\mathfrak{c} - \mathfrak{b}}{\mathfrak{a} + \mathfrak{c} - \mathfrak{b} - \mathfrak{d}} > \max \left[\frac{\mathfrak{c} - \mathfrak{a}}{\mathfrak{c} - \mathfrak{d}}, \frac{\mathfrak{d} - \mathfrak{b}}{\mathfrak{a} - \mathfrak{b}} \right] = \delta^C,$$

when $\mathfrak{b} + \mathfrak{c} < 2\mathfrak{a}$, and otherwise

$$\delta^P = \frac{2(\mathfrak{c} - \mathfrak{d})}{\mathfrak{b} + 3\mathfrak{c} - 4\mathfrak{d}} > \delta^M = \frac{\mathfrak{c} - \mathfrak{b}}{2(\mathfrak{c} - \mathfrak{d})} > \frac{\mathfrak{d} - \mathfrak{b}}{\mathfrak{c} - \mathfrak{d}} = \delta^C,$$

Conclusion

- Characterization of equilibria in behavior strategies
- Self-supporting sets offer easy way to find behavior strategies
- It is possible to compare equilibria under different assumptions
- Open problem: punishment strategies in pure and behavior strategies

That's all folks...

Thank you! Any questions?

