
xx manuscript No.
(will be inserted by the editor)

An algorithm for computing the minimum
pure-strategy payoffs in repeated games

Kimmo Berg and Markus Kärki

Received: date / Accepted: date

Abstract This paper presents a method for computing the minimum pure-
strategy subgame-perfect equilibrium payoffs in repeated games. These opti-
mal punishments play an important role as they provide the players’ credible
threats and the required incentives to stay on the equilibrium path of play. The
algorithm is based on the idea of branch-and-bound, and it produces lower and
upper bounds for the minimum payoffs. The optimal punishment paths may
be long in general and finding them is a difficult computational problem. It is
also shown that approximations of bounded length can be obtained by relaxing
either feasibility or optimality.

Keywords repeated game · minimum payoff · subgame perfection · pure
strategy · Nash equilibrium

1 Introduction

Repeated games provide a foundation for studying rational behavior in dy-
namic interactions (Mailath and Samuelson 2006). These models also help
understanding better how autonomous agents behave in a multiagent systems
(Shoham and Leyton-Brown 2008). The main solution concept in these games
is the subgame-perfect Nash equilibrium, which requires that the strategies
have to form an equilibrium in all the possible decision nodes in the game.
Thus, the players can only use credible threats in supporting equilibrium be-
havior. The structure of equilibrium strategies in infinitely repeated games has
been characterized in Abreu (1988) and Abreu et al. (1990), where it is shown
that all the equilibrium outcomes can be obtained in simple strategies. These
strategies consist of an equilibrium path that is followed and a punishment
path for each player that is implemented if the player unilaterally deviates

Department of Mathematics and Systems Analysis, Aalto University School of Science
P.O. Box 11100, FI-00076 Aalto, Finland
E-mail: kimmo.berg@aalto.fi

2 Kimmo Berg and Markus Kärki

from the current path of play. Due to subgame-perfection, the punishment
paths are equilibrium paths and each one of them provides that player’s min-
imum payoff. This paper focuses on finding these paths and payoffs. They
are especially important since they are required when the set of equilibria is
computed.

The computation of Nash equilibria has received a lot of attention recently
(Sandholm et al. 2005; Littman and Stone 2005; Daskalakis et al. 2006; Sand-
holm 2007; Porter et al. 2008; Herings and Peeters 2010; Sandholm 2012).
The methods for infinitely repeated discounted games are usually based on
the fixed-point characterization of Abreu et al. (1986, 1990). However, many
of the methods rely on the use of public randomization and correlated strate-
gies (Cronshaw and Luenberger 1994; Cronshaw 1997; Judd et al. 2003; Burkov
and Chaib-draa 2010; Salcedo and Sultanum 2010; Abreu and Sannikov 2013),
which simplifies the model considerably by making the payoff set convex; see
also the extensions to the dynamic and stochastic games (Judd and Yeltekin
2011; Hörner et al. 2011). These methods produce fast approximations to the
payoff set without providing the action sequences that generate the payoffs.

This paper examines a model that does not require the use of public ran-
domization, but we restrict our analysis to pure strategies. The more general
model is examined in Berg and Schoenmakers (2014), where the players can use
randomized strategies but they only observe the realized pure actions. More-
over, we assume perfect monitoring, i.e., the players can observe all the past
actions. Thus, the model can be seen as a problem of designing a determin-
istic path of pure actions such that no player wants to deviate from the plan
at any stage. This model has been examined in Berg and Kitti (2012, 2013),
where it is shown that the equilibrium paths consist of fragments called ele-
mentary subpaths; which also generalize to stochastic games (Berg 2012). The
method of Berg and Kitti has made it possible to compute subgame-perfect
equilibria by constructing the equilibrium paths from smaller fragments, and
all the equilibria can be obtained if the game has a finite number of elemen-
tary subpaths, which is the case when the discount factors are small enough.
A problem with this method is that it requires that the minimum equilibrium
payoffs are known. This paper offers a solution to this problem by providing
an algorithm for computing the minimum payoffs.

The task can be seen as an optimization problem where we try to find a path
for each player that minimizes the player’s payoff and no player should have
a profitable deviation. These constraints mean that the punishment paths de-
pend on each other, which makes the problem more complicated to solve since
the paths should be searched simultaneously. We develop a method that finds
the punishments paths systematically using the branch-and-bound method. It
provides bounds for the minimum payoffs and a feasible equilibrium path as
an upper bound.

We find that in many games the punishment paths have a particular finite
structure, where the path consists of a starting sequence and a loop that is
infinitely repeated. Our method enumerates all the possible paths of this type
by increasing the length of the structure. We have noticed that the punishment

Minimum Equilibrium Payoffs in Repeated Games 3

paths may be long in some games and this makes it difficult to find them.
For this reason, we examine approximations where the punishment paths are
guaranteed to be of finite length, which bounds the computational complexity.

The paper is structured as follows. The repeated game model and the
notion of subgame-perfect equilibrium is defined in Section 2. The branch-and-
bound algorithm is developed in Section 3. Numerical results are presented
in Section 4. Section 5 develops approximations by relaxing feasibility and
optimality. Section 6 is the conclusion.

2 Repeated games and definitions

In repeated games, the same stage game is played over and over again either
finitely or infinitely many times. We examine the latter case and these models
are sometimes called as supergames. The stage game can be defined with a
tuple (N, {Ai}i∈N , {ui}i∈N), where N = {1, . . . , n} denotes the finite set of
players, Ai is the finite set of actions and A = ×i∈NAi is the set of action
profiles. If the players choose actions a = (a1, . . . , an), i.e., an action profile a ∈
A, then player i receives the payoff ui(a). As usual, player i’s opponents’ action
profiles are denoted by a−i ∈ A−i = ×j ̸=iAj , j ∈ N . Let vi = maxa∈A ui(a)
be the player i’s maximum payoff in the stage game and the minimax value is

vi = min
a−i∈A−i

max
ai∈Ai

ui(ai, a−i). (1)

The best possible deviation by player i from action profile a is

v∗i (a) = max
ai∈Ai

ui(ai, a−i). (2)

We assume perfect monitoring, which means that the players observe and
remember all the past action profiles that have been played in the game. The
set of length k histories is given by Ak = ×kA, and the set of all possible
histories is A =

∪∞
k=0 A

k, where A0 = {∅} is the empty set, which corresponds
to the beginning of the game where no actions have been played yet.

Note that the sets Ak and A∞ contain the k-length and the infinitely long
paths;A is the set of all paths. The length of path p is denoted by |p|. Moreover,
let pj denote the path that starts from the element j + 1 of p and pk is the
path of first k elements of p. For example, if p = a0a1 . . ., then p1 = a1a2 . . .,
pk = a0 . . . ak−1 and pkj = aj . . . aj+k−1. Let f(p) denote the first action profile

of path p. Similarly, Ak(a), A∞(a) and A(a) denote the set of paths that begin
with an action profile a ∈ A.

We denote the action profiles by alphabets; e.g., the action profiles are
{a, b, c, d} in a two-player game with two actions. Now, we can denote an
infinitely-long path by d7(cb)∞, which means that the players first play the
action profile d seven times and then repeat infinitely the sequence of action
profiles c and b.

We assume that the players use pure strategies, i.e., we do not allow ran-
domized nor correlated strategies. A pure strategy of player i is a sequence of

4 Kimmo Berg and Markus Kärki

mappings σ0
i , σ

1
i , . . ., where σk

i : Ak 7→ Ai. The set of strategies for player i
is Σi, and the strategy profile composed of σ1, . . . , σn is denoted by σ. Given
a strategy profile σ and a path p, the restriction of the strategy profile after
p is σ|p. The outcome path induced by σ is (a0(σ), a1(σ), . . .) ∈ A∞, where
ak(σ) = σk(a0(σ) · · · ak−1(σ)) for all k.

We examine the case where the players discount the future payoffs with
the discount factors δi ∈ [0, 1), i ∈ N . Note that this model also has an
interpretation where the players have uncertainty about the length of the game
and the discount factor reflects the probability that the game will continue.
When the players choose strategies σ1, . . . , σn, i.e., they play a strategy profile
σ, player i receives the utility given by the discounted average payoff

Ui(σ) = (1− δi)

∞∑
k=0

δki ui(a
k(σ)), (3)

where the term (1− δi) normalizes the repeated game payoffs such that they
correspond to the stage game payoffs. A strategy σ is a subgame-perfect equi-
librium (SPE) of the supergame if

Ui(σ|p) ≥ Ui(σ
′
i, σ−i|p) for all i ∈ N, p ∈ Ak, k ≥ 0, and σ′

i ∈ Σi.

This means that no player can gain by deviating from the given strategy σ at
any stage of the game. From now on, we refer equilibrium as subgame-perfect
equilibrium. This paper focuses on the paths that can be played when the SPE
strategies are used.

Definition 1 A path p ∈ A∞ is a subgame-perfect equilibrium path if there
is an SPE strategy profile that induces it.

It has been shown in Abreu (1988), see also Abreu et al. (1986, 1990), that
the only thing that matters from the players’ strategies is the induced path of
play and what the players do if a unilateral deviation occurs. Abreu has shown
that it is enough to study simple strategies when analyzing the set of equilibria.
A simple strategy consists of n+1 paths (p0, p1, . . . , pn): an equilibrium path
p0 that is played and an optimal punishment path pi for each player i ∈ N .
The punishment paths are equilibrium paths themselves that give the players’
minimum equilibrium payoffs. The play follows the current path unless a single
player j ∈ N deviates from it. In that case, the punishment path pj is restarted
and it becomes the new path to be followed. The deviations by more than one
player are neglected and they need not be considered as we examine non-
cooperative games. The current path is initially p0 and after deviation(s) one
of the paths pi, i ∈ N .

The set of SPE payoffs has been characterized in Abreu et al. (1986, 1990).
Let V denote the compact set of SPE payoffs. The minimum SPE payoff
of player i is denoted by v−i (δ) when the players discount factors are δ =
(δ1, . . . , δn), if V is non-empty. It should be noted that the set of equilibria
may be empty in pure strategies, but it is assumed that this is not the case. We
assume that the stage game has at least one pure-strategy Nash equilibrium,

Minimum Equilibrium Payoffs in Repeated Games 5

which guarantees that V is non-empty. The equilibrium conditions for the
SPE paths are given by the following one-shot deviation principle. A path
p = a0(σ)a1(σ) · · · induced by a strategy σ is an SPE path if and only if

(1− δi)ui

(
ak(σ)

)
+ δiv

k
i ≥ max

ai∈Ai

[
(1− δi)ui

(
ai, a

k
−i(σ)

)
+ δiv

−
i (δ)

]
, (4)

for all i ∈ N , k ≥ 0, and where

vki = (1− δi)
∞∑
j=0

δji ui

(
ak+1+j(σ)

)
is the continuation payoff after ak(σ). The incentive compatibility (IC) condi-
tion (4) means that the players should prefer the payoffs given by path p to
any deviations at any stage that are followed by the punishment paths with
payoffs v−(δ). We say that a path is feasible if it is incentive compatible.

The set of equilibria is recursive in the sense that all the equilibrium paths
depend on and are supported by the punishment paths and their payoffs v−(δ).
Note that the punishment paths may depend on each other. In general, the
minimum payoffs are not known, but with perfect monitoring they are above
the minimax values v−i (δ) ≥ vi. The aim of this paper is to find the punish-
ment paths and the corresponding minimum equilibrium payoffs for different
discount factors. Note, however, that the optimal punishments may not be
required for all equilibria; e.g., the repetition of stage game Nash equilibrium
has no profitable deviations and thus requires no punishment at all.

It should be noted that the minimum SPE payoff may be smaller in random-
ized strategies. For example, the set of equilibria in the matching pennies game
is empty in pure strategies, whereas there is a single mixed-strategy subgame-
perfect equilibrium outcome. Moreover, it is possible to obtain a lower SPE
payoff in the battle-of-the-sexes game with randomized strategies.

2.1 Monotonicity of equilibria

The following results illustrate the difference between the monotonicity of equi-
librium paths and payoffs, and how they depend on the convexity assumptions
and the minimum payoffs. The proofs are from Berg (2013); Berg and Kärki
(2014).

Let V (δ) denote the payoff set when the players have the discount factors
δ = (δ1, . . . , δn). By δ2 ≥ δ1 we mean that δ2i ≥ δ1i for all i ∈ N . We say
that a pair (a,w) of an action profile a ∈ A and a continuation payoff w ∈
W is admissible with respect to W if it satisfies the incentive compatibility
conditions:

(1− δi)ui(a) + δiwi ≥ (1− δi)di(a) + δiv
−
i (W),

for all i ∈ N . Let us define a mapping Bδ : Rn 7→ Rn

Bδ(W) =
∪

(a,w)∈A×W

(I − T)u(a) + Tw, (5)

6 Kimmo Berg and Markus Kärki

where (a,w) is admissible with respect to W , I is an n × n identity matrix,
and T is a diagonal matrix with δ1, . . . , δn on the diagonal. The following
proposition is proven in Abreu et al. (1990); Mailath and Samuelson (2006).

Proposition 1 If a bounded set W is self-generating, i.e., W ⊆ Bδ(W), then
Bδ(W) ⊆ V (δ).

Theorem 1 Suppose V (δ1) is convex then V (δ1) ⊆ V (δ2) for δ2 ≥ δ1.

Proof By Proposition 1, it is enough to show that for all v ∈ V (δ1) it holds
that v ∈ Bδ2(V (δ1)). It is enough to show that there is an admissible pair
(a,w2) of an action profile a and a continuation payoff w2 ∈ V (δ1) such that
v = (1 − δ2)u(a) + δ2w

2 for every v ∈ V (δ1), i.e., (a,w
1) is admissible for a

continuation payoff w1 ∈ V (δ1) and v = (1 − δ1)u(a) + δ1w
1. By denoting

δ2 = δ1 + ϵ, we can solve

(δ1 + ϵ)w2 = δ1w
1 + ϵu(a).

This means that w2 is a convex combination of w1 and u(a). Combining with
the result that v is between u(a) and both w1 and w2, we get that w2 is between
w1 and v. Thus, it follows that w2 ∈ V (δ1) by convexity and v, w1 ∈ V (δ1).
Finally, we need to check the admissibility with δ2. The only remaining thing
to check is that the punishment payoff is not increasing and it is not since
v−i (V (δ1)) ∈ Vi(δ1) for all i ∈ N and together with the above result we have
v−(V (δ2)) ≤ v−(V (δ1)).

Theorem 2 Suppose a path p ∈ A∞ is an SPE path for δ1 and v−(δ1) ≥
v−(δ2), then p is an SPE path for δ2 ≥ δ1.

Proof Let uk denote the payoffs at stage k on path p, i.e., uk = u(ak) when the
action profile ak is played at stage k. Also, let dk = d(ak) denote the deviation
payoffs, and T1 and T2 are the diagonal matrices corresponding the discount
factors δ1 and δ2, respectively. Now, we can rewrite the incentive compatibility
conditions for δ1:

(I − T1)u
k + T1

(I − T1)

∞∑
j=0

T j
1u

k+j+1

 ≥ (I − T1)d
k + T1v

−(V (δ1)),

for all k ≥ 0. Let us rearrange the equation and multiply from left by (I−T1)
−1:

Sk
1

.
= uk − dk + T1

∞∑
j=0

T j
1

(
uk+j+1 − v−(V (δ1))

)
≥ 0 for all k = 0, 1,

Similar expression can be derived for Sk
2 with T2, and the purpose of the

proof is to show that Sk
2 ≥ 0 for all k ≥ 0, which means that the incentive

compatibility conditions hold for T2 along the path p.
We can solve the recursion which Sk

i satisfies:

Sk
i = uk − dk + Ti

(
dk+1 − v−(V (δi)) + Sk+1

i

)
, for all k ≥ 0 and i = 1, 2.

Minimum Equilibrium Payoffs in Repeated Games 7

Note that the first part uk−dk is a vector with non-positive components, which
implies that the components of the second part dk+1−v−(V (δ1))+Sk+1

1 , k ≥ 0,
must be non-negative, since Sk

1 ≥ 0 due to incentive compatibility.
Let δ2 = δ1 + ϵ and E is the diagonal matrix corresponding ϵ ≥ 0. We can

simplify the expression for δ2:

Sk
2 ≥ uk − dk + (T1 + E)

(
dk+1 − v−(V (δ1)) + Sk+1

2

)
= Sk

1 + E
(
dk+1 − v−(V (δ1)) + Sk+1

1

)
+ (T1 + E)

(
Sk+1
2 − Sk+1

1

)
,

where the first inequality follows from the fact that v−(V (δ1)) ≥ v−(V (δ2)).
Now, we can write

Sk
2 − Sk

1 ≥ E
(
dk+1 − v−(V (δ1)) + Sk+1

1

)
+ (T1 + E)

(
Sk+1
2 − Sk+1

1

)
≥ (T1 + E)

(
Sk+1
2 − Sk+1

1

)
,

where the inequality follows from the earlier observed non-negativity of dk+1−
v−(V (δ1)) + Sk+1

1 . Now, we can use this recursion:

Sk
2 − Sk

1 ≥ E
∞∑
j=0

(T1 + E)kZk,

where Zk = dk+1 − v−(V (δ1)) + Sk+1
1 ≥ 0. Thus, Sk

2 ≥ Sk
1 ≥ 0. ⊓⊔

Note that the path monotonicity is a more robust property since the con-
vexity assumption is not required and the punishment payoffs are monotone
in many games for all discount factors. For example, the equilibrium paths
are monotone in all prisoner’s dilemma games where the punishment payoffs
are constants, but the payoff sets are not monotone in general in these games
(Berg and Kärki 2014).

3 Branch-and-bound algorithm

We now present the main algorithm and its steps are explained in more detail
in the subsections. The algorithm is based on systematically examining all the
finite-length paths and discarding the ones that either have some profitable
deviations or do not provide small enough payoff to the punished player. Since
there can be a huge number of paths, we start with the ones that provide
small payoffs to the players. This heuristic provides good upper bounds fast,
which helps reducing the paths that need to be examined. However, proving
optimality can be slow as it requires going through all the remaining paths.
This is a typical feature in integer optimization, where heuristics provide good
solutions fast but proving optimality is slow.

Algorithm 1 consists of three steps and it maintains two lists: a set B
contains the finite sequences how the punishment paths start, and a set Q
contains infinitely-long paths. The set B is initialized by generating all the
one-length paths. If all of them have a profitable deviation for some player,

8 Kimmo Berg and Markus Kärki

Algorithm 1: Compute the minimum paths and payoffs
Input: Stage game payoffs, discount factors δi, error tolerance ϵ, maximum path

length maxlen, parameter num for number of paths
Result: Bounds for v−(δ), best found feasible paths
Initialize the set of paths B;
Set ub← v and lb← v;
while ubi − lbi > ϵ, ∀i do

1. Select num paths for each active player from B;
2. For each selected path, we do
a) Check that the punished player does not deviate at any stage;
if there is a profitable deviation then Move to next path;
b) Compute the minimum continuation payoff requirements for all players;
if lowest payoff from the path is higher than ubi then Move to next path;
else if any cont. payoff requirement is too high then Move to next path;
c) Form and add the possible punishment paths to Q;
3. Find the minimum feasible paths from Q and update B;

end

then the stage game does not have a pure-strategy Nash equilibrium and the
algorithm is terminated as the set of repeated game equilibria is empty as well.

In Step 1, we choose a number of paths given by the parameter num for
the active players, i.e., for each player i for which ubi − lbi > ϵ, where lb and
ub are the players’ lower and upper bounds for the minimum payoffs. The
parameter num affects how large integer program needs to be solved in Step
3. The chosen paths are required to be shorter than the parameter maxlen in
order to bound the required computation time. The paths can, e.g., be chosen
based on the length, the payoff or the total payoff that takes into account the
required continuation payoffs. In the algorithm, we select the paths based on
total payoff, which are equal to the lower bound estimates in Eq. (9).

3.1 Step 2a: Checking deviations

In Step 2, we go through the selected paths and generate the possible pun-
ishment paths from them. Step 2a checks that the punished player does not
deviate from the examined path. For example, if the path starts with abca
and the player could get better payoff by deviating from c to a, then the out-
come path would be (aba)∞, and the path starting with abca cannot be the
punishment path.

Let M(k) be the payoff of the punished player if he always deviates from
the k-th action profile

M(k) =
1− δi
1− δki

[
Ui(p

k−1) + δk−1
i v∗i (f(pk−1))

]
, (6)

where v∗i (f(p)) is the best possible deviation as in Eq. (2) and f(p) the first
action profile of path p. The deviation is not profitable if M(k) is smaller than
or equal to the payoff that the player receives when path p is followed. Now, if

Minimum Equilibrium Payoffs in Repeated Games 9

any M(k) ≥ ubi then also path p gives a higher payoff than ubi and the path
cannot be the punishment path. Thus, if the following condition does not hold

ubi ≥
1− δi
1− δki

[
Ui(pi

k−1) + δk−1
i v∗i (f(pik−1))

]
, ∀k, (7)

then the path can be discarded.

3.2 Step 2b: Computing the minimum continuation payoffs

Step 2b computes the minimum continuation payoffs that are required after
the examined path for all players. These values can be used in discarding paths
that are not feasible or provide too high payoffs compared to the current upper
bounds.

Let conj
i denote the minimum continuation payoff of player i that is re-

quired after the punishment path of player j, pj, which can be solved from
Eq. (4)

conj
i = max

k=1,...,|pj|
[(1− δi)v

∗
i (f(pjk−1)) + δilbi(par(b))− Ui(pjk−1)] /δ

|pj|−k+1
i ,

(8)
where par(b) is the parent node of path b. The index k goes through all the
possible stages where the player can deviate, and the deviation is followed by
the punishment payoff of the parent node lbi(par(b)). Now, the lower bound
of path b can be computed

lbi(b) = (1− δi)Ui(pi) + δ
|pi|
i coni

i, (9)

where Ui(pi) is the payoff of player i from path pi. This assumes that the
minimum continuation payoff after pi, coni

i, can be achieved after pi is played.
If the lower bound of the path is higher than the global upper bound, i.e.,
lbi(b) ≥ ubi, then the path can be discarded. Thus, the path should be exam-
ined only if

coni
i < δ

−|pi|
i (ubi − (1− δi)Ui(pi)). (10)

The computation of con also helps cutting the infeasible paths. If a path
requires too high continuation payoff that cannot be achieved in the game,
then the path can by discarded. The path can be an equilibrium only if

conj
i ≤ vi, ∀i, j. (11)

The value vi can be replaced by a better bound if one is known for the game.
If either of the conditions (10) and (11) does not hold, the path is discarded.

10 Kimmo Berg and Markus Kärki

3.3 Steps 2c and 3: Compute the bounds and update B

For each path p, we form all the possible loops: qk = pk−1(pk−1)
∞ for k =

1, . . . , |p|. For each loop, we compute the players’ payoffs and the minimum
punishment payoffs that are required in order for the path to be feasible. If
the payoff is smaller than the current upper bound, we add the infinitely-long
path to the set Q. For example, for a path bcd we form paths (bcd)∞, b(cd)∞

and bcd∞. We also generate all the children of the path; e.g., for a path bd we
add paths bda, bdb, bdc, bdd to B if the game has four action profiles.

In Step 3, we have a list Q of infinitely-long paths with payoffs that they
provide and payoffs that are required for them to be feasible. We solve a binary
linear program that finds for each player the feasible path from Q that gives
the minimum payoff. The binary variables select one path for each player and
the objective is to minimize the sum of the payoffs of the selected paths. The
constraints make sure that the selected paths are feasible, i.e., the selected
paths need to yield smaller payoffs than the required continuation payoffs. If
the upper bounds are improved, the paths that now give too high payoffs are
discarded from the set B.

3.4 Maximum and Pareto efficient payoffs

A similar method can be used in computing the maximum payoffs once the
minimum payoffs are known. This is much easier task since these paths do not
depend on each other and the integer program in Step 3 is not needed any
more. We can discard the paths for three reasons: 1) if it is infeasible, 2) if it
provides too low payoff compared to the best found paths, or 3) if the required
continuation payoff cannot be achieved in the game. These correspond to the
conditions in Step 2. Moreover, this extension allows us to find those Pareto
efficient payoffs that can be represented as a weighted sum of the players
payoffs. Thus, the method can be used in computing the extreme payoffs of
the supergame.

4 Numerical results

4.1 Random games

We test the algorithm with randomly generated normal-form games. The pay-
offs and the discount factors are randomly drawn from the uniform distribution
between zero and one, and the game is discarded if it does not have a pure-
strategy Nash equilibrium. On average, around 1400 games were generated
in order to obtain 1000 games with at least one pure-strategy equilibrium;
i.e., 30% of the games had an empty set of equilibria. We set maxlen = 6,
ϵ = 0.01, repeat for 1000 games and stop the computation after 300 seconds
if it takes longer than that. Moreover, we set num = 50 for two-player games

Minimum Equilibrium Payoffs in Repeated Games 11

Table 1: The results for the random games.

n Acts Time #OT OT ϵ #OL OL ϵ Len1 Len
2 2 0.09 0 - 261 0.063 87% 4.4
2 3 7.16 18 0.075 191 0.034 73% 3.9
2 5 41.3 112 0.066 127 0.025 57% 3.6
2 10 88.2 233 0.049 77 0.021 51% 3.1
3 2 5.81 10 0.149 235 0.041 67% 4.4
3 3 68.9 189 0.087 225 0.043 47% 4.1
3 5 230 686 0.090 59 0.047 39% 3.1
5 2 132 353 0.092 440 0.044 42% 4.1

0 25 50 75 100 125
0

50

100

150

200

250

number of action profiles

co
m

pu
ta

tio
n

tim
e

in
 s

ec

(a) Average computation times

0 50 100 150 200 250 300
0

100

200

300

400

500

computation time in sec

(b) Histogram of times in 5-player games

Fig. 1: Computation times in random games.

and num = 25 for the others. The results are given in Table 1 and Figure 1.
Time column gives the average computation time of the games. #OT column
shows the number of games that hit the time limit, and OT ϵ column gives the
average gap between lower and upper bounds for the overtime games. #OL
column gives the number of games that reached the point where all paths
up to maxlen are examined, and OL ϵ column gives the error gap for these
games. Len1 column gives the percentage of paths that are of length one and
Len shows the average length of paths longer than one. In the figure, the times
of the two-player and three-player games are connected with a line. The runs
were conducted on Intel Core i5-520M at 2.40 GHz with 3 GB of RAM un-
der 32-bit Windows 7. The algorithms were implemented in Matlab 7.10.0.499
(R2010a) and CPLEX 12.6.0 (cplexbilp).

We can see from the results that the computation times grow reasonably
when the number of action profiles increase and it is fast to solve games up to
100 action profiles. Figure 1b shows a typical distribution over the repetitions:
some games hit the 300 second limit and the other times follow a geometric
distribution. We did not solve larger games as the number of action profiles
grow fast in the normal-form games. For example, a ten-player game with only
two actions has 210 = 1024 action profiles. The errors in the overtime games

12 Kimmo Berg and Markus Kärki

Table 2: The results for the maximum payoffs.

n Acts Time #OT OT ϵ #OL OL ϵ Len1 Len Single Range
2 2 0.12 0 - 68 0.054 91% 4.4 583 0.29
2 3 7.75 20 0.090 23 0.053 83% 4.1 364 0.29
2 5 25.1 74 0.054 4 0.028 76% 3.4 174 0.26
2 10 33.0 88 0.036 0 - 78% 2.6 177 0.19
3 2 5.99 13 0.036 92 0.044 71% 4.1 254 0.37
3 3 26.7 72 0.044 22 0.037 62% 3.6 112 0.43
3 5 53.1 138 0.036 0 - 68% 2.7 92 0.38
5 2 27.0 61 0.040 79 0.027 50% 3.4 68 0.58

are small, which means that it is possible to find good approximations even for
the most difficult games in the sample. Many of the games also hit the maxlen
limit and the average error is larger than ϵ in these games. The average errors
are, however, smaller than the errors in the games that hit the time limit.

The real errors are much smaller than the found error bounds. We have
solved the 2 × 2 OL games with a maxlen = 12 value and the average error
falls from 0.063 to 0.028. A half of these games are solved to ϵ = 0.01 limit
and the other half hit the maxlen limit again. The upper bounds decrease on
average by 0.0019, which means that mainly the lower bounds are increased.
Thus, the found solutions seem to be close to the optimal ones and the problem
with the method is proving the optimality, i.e., updating the lower bounds and
eliminating the infeasible paths.

The results for the maximum payoffs are given in Table 2. Single column
shows the number of games where the payoff set is a single point and Range
gives the average between the maximum and minimum payoff for cases where
these payoffs do not coincide. The computation times are much smaller, espe-
cially for bigger games. There are much less games that hit the time cap or
the maxlen limit. Moreover, the paths with maximum payoffs are on average
shorter than the punishment paths.

4.2 Duopoly game of Abreu

Oligopoly models are one of the most studied applications of repeated games.
Here, we examine the duopoly model of Abreu (1988), where the punishment
strategies and the payoff sets for different discount factors have been a mystery
until now.

L M H
L 10, 10 (a) 3, 15 (b) 0, 7 (c)
M 15, 3 (d) 7, 7 (e) −4, 5 (f)
H 7, 0 (g) 5,−4 (h) −15,−15 (i)

The firms have three output levels: low (L), medium (M) and high (H). The
nine action profiles are denoted by letters a to i, and the stage game’s Nash

Minimum Equilibrium Payoffs in Repeated Games 13

0

0.25

0.5

0.75

10 0.25 0.5 0.75 1

0

1

2

3

4

5

6

7

d1

d2

(a) Minimum payoff

15

14

10

8

d1
d2

0.25

0.5

0.75

0.25 0.5 0.75

(b) Maximum payoff

Fig. 2: Player 1’s payoffs for different discount factors in duopoly.

equilibrium is e, i.e., (M,M), giving payoff 7. The minimax payoff is vi = 0,
and thus for all discount factors it holds that 0 ≤ v−i (δ) ≤ 7, i = 1, 2.

We run the algorithm with the same parameters as before, except we allow
the punishment paths to be longer by setting maxlen = 12. The upper bounds
and the maximum payoffs of player 1 are presented in Figure 2, where d1
and d2 refer to the players’ discount factors. For low discount factors the
punishment strategy is to play the stage game’s Nash equilibrium and the
punishment payoff for high discount factors is the minimax value. These are
obtained by playing very simple paths e∞ and c∞. In between, there is a region
where the punishment strategies are more complicated and the punishment
payoff is roughly between 0 and 2. For example, the optimal paths found for
(δ1, δ2) = (0.4, 0.66) are p1 = c∞ and p2 = h(hbhd)∞ giving payoffs 0 and
0.03.

Note that the punishment payoffs are not monotone in this game as the
punishment payoffs may increase when one of the players becomes more pa-
tient. Thus, this example suggests that the equilibria may not be monotone
in real-world applications, which complements the results presented in Berg
(2013).

The errors are large only in few isolated points and two bigger regions (the
errors are between 3-7). The two regions are when one player has a discount
factor over 0.7 and the other under 0.1. In these regions the punishment payoff
is probably 7 but the method has problems updating the lower bounds. In
other regions, the errors are basically zero. 211 games out of 2401 took over
300 seconds to solve and for others the average time is 6.1 seconds. 275 games
hit the maxlen limit and the average error for these games is 0.23. The average
error for the overtime instances is 3.91, which is quite high.

14 Kimmo Berg and Markus Kärki

0
0.25

0.5
0.75

10 0.25 0.5 0.75 1

4

4.5

5

d1

d2

(a) Best found

0
0.25

0.5
0.75

10 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

d1

d2

(b) Errors

Fig. 3: Player 1’s punishment payoffs in anti-no conflict game.

The regions with high maximum payoff coincide with the low minimum
payoffs. The maximum payoffs depend on both players’ punishment payoffs,
and we can see that the maximum payoff of player 1 increases as the punish-
ment payoff of player 2 decreases. Playing d with payoff (15, 3) requires that
player 2 does not want to switch to action profile e with payoff 7. This is
achieved when the punishment payoff after the deviation is close to zero. Note
also that the maximum payoff is not monotone with respect to the player’s
own discount factor.

4.3 Anti-no conflict game

There are only few types of 2 × 2 games that have nontrivial punishment
strategies and here we examine one of them, which is called the anti-no conflict
game. The game itself is artificial as it has a dominant Nash equilibrium.
However, it is important to find the minimum payoffs, since this type of payoffs
can be a part of some larger game and finding a lower payoff than 5 may
support some other action profiles that give higher payoff than 5 in the larger
game.

L R
T 5, 5 4, 3
B 3, 4 2, 2

The minimax value is 4, but the corresponding action profiles (T,R) and (B,L)
cannot be played repeatedly since they give a smaller payoff than 4 to the
punishing player. The upper bounds and the errors are shown in Figure 3.

We can see from the figures that it is possible to punish the other player
if the discount factors are high enough. The minimum payoffs are close to
the minimax values, and the punishment paths are long and complicated for

Minimum Equilibrium Payoffs in Repeated Games 15

high discount factor values. For example, it is possible to punish with a path
daac(baaaadaa)∞ with a payoff of 4+2.9 ·10−7, when δ1 = δ2 = 0.8. However,
it should be noted that many times it is possible to obtain a low payoff with a
short path. For example, the path dca∞ gives a payoff of 4.08 with the given
discount factors. Thus, it may be that simple punishments are enough in order
to support good outcomes and the difficult-to-find optimal punishments are
not required. Moreover, we note again that the algorithm has some problems
in updating the lower bounds when one discount factor is low and the other
one is high.

5 Approximations

Discounting makes the payoffs far ahead in the future less important and the
first action profiles on the path determine mainly the players’ payoffs. This
makes it possible to bound the length of the paths that need to be examined
if we restrict to certain approximations.

It has been shown in Berg and Kitti (2012) that all the equilibrium paths
consist of fragments called elementary subpaths. The following result tells us
that the length of the elementary subpaths is finite for paths whose payoff is
strictly above the deviation payoffs; see Proposition 3 in Berg and Kitti (2012).

Proposition 2 For any ε > 0 there is k such that pl is an l-length elementary
subpath for some l ≤ k when p ∈ A∞(a) is an SPE path, a ∈ A, and

vi(p) ≥ (1− δi)v
∗
i (a) + δiv

−
i (δ) + ε, for all i ∈ N. (12)

This means that if a path is such that no player is near to deviating at any
stage then that path can be composed of elementary subpaths which are of
finite length. Morever, the more the payoffs are above the deviation payoffs,
the shorter the required elementary subpaths are.

Now, if we restict to paths where the players are not near to deviating,
we can bound the length of elementary subpaths that need to be examined.
Let a strategy profile σ be an ε-strict incentive compatible equilibrium if all
one-shot deviations from σ for any player lead to payoffs that are worse than
the deviating player’s original payoff by at least ε. Note that the more common
notion of ε-strict equilibrium means that a strategy profile σ satisfies

Ui(σ|p) ≥ Ui(σ
′
i, σ−i|p) + ε for all i ∈ N, p ∈ Ak, 0 ≤ k < ∞, and σ′

i ∈ Σi.

These strategies would allow for more general deviations than only one-shot
deviations provided that they lead to payoffs that are worse than the original
payoff by at least ε. Any strategy that is not ε-strict incentive compatible
equilibrium cannot be ϵ-strict equilibrium either. Hence, ε-strict equilibria are
a subset of ε-strict incentive compatible equilibria.

An ε-strict incentive compatible equilibrium path is a path of action pro-
files induced by an ε-strict incentive compatible equilibrium strategy. If all
elementary subpaths are found up to length k(ε), then all ε-strict equilibria
are obtained from these subpaths; see Proposition 9 in Berg and Kitti (2012).

16 Kimmo Berg and Markus Kärki

Proposition 3 For any ε > 0 there is k such that all ε-strict incentive com-
patible equilibrium paths are obtained from the up to k-length elementary sub-
paths.

It is also possible to relax the feasibility and get all 0-equilibria. Let a
strategy profile σ be an ε-incentive compatible equilibrium if no player has a
one-shot deviation from σ that would benefit the deviating player by at most
ε. Moreover, a strategy σ is an ε-equilibrium if

Ui(σ|p) ≥ Ui(σ
′
i, σ−i|p)− ε for all i ∈ N, p ∈ Ak, 0 ≤ k < ∞, and σ′

i ∈ Σi.

Hence, ε-incentive compatible equilibria are a subset of ε-equilibria. A path
that is induced by an ε-incentive compatible equilibrium strategy profile is
an ε-incentive compatible equilibrium path. Proposition 8 in Berg and Kitti
(2012) shows that all 0-equilibria (and some ε-equilibria) can be formed from
elementary subpaths up to length k.

These results help in finding the punishment strategies if we restrict the
search to either ϵ-strict equilibria or relax the feasibility to ε-equilibrium. It is
possible to combine these results with the method presented in Berg (2013).
In that method the punishment values are set below the optimal values and
then all equilibria is computed. The punishment values are increased if the
payoffs from the found paths are higher than the current values, i.e., there are
no paths that give that low payoffs to the players. Since the punishment values
are lower than the optimal punishments, the equilibrium paths are subset of
the paths found in the algorithm. By restricting to the above approximations,
this algorithm would terminate in a finite number of iterations.

These are theoretical results and they can also be implemented with Algo-
rithm 1. By limiting the maxlen parameter, we get the punishment paths for
ϵ-strict equilibria, and by relaxing the equations related to the feasibility we
find punishment paths that give lower payoffs compared to 0-equilibria with
paths that are ε-equilibria.

6 Conclusions and future research

In this paper, we have presented an algorithm for computing the minimum
pure-strategy subgame-perfect equilibrium paths and payoffs. The algorithm
applies the idea of branch-and-bound, and it systematically considers all the
possible finite paths for each player. The method tries to find paths that give a
low payoff to one of the players, but so that none of the players want to deviate
from the path. These paths provide upper bounds to the minimum payoffs.
Once good upper bounds are found, many of the paths can be discarded as they
give too high payoffs. Based on the numerical experiments, the method works
well when the number of action profiles is small enough. For larger games,
approximations can be computed by relaxing either optimality or feasibility of
the paths.

The method makes it possible to study the punishment strategies as well
as the Pareto efficient solutions, which has only been possible before for small

Minimum Equilibrium Payoffs in Repeated Games 17

games (Berg 2013). For example, we have demonstrated the method in a
duopoly game and observed that the punishment paths can be complicated
for certain discount factors and the minimum payoffs are not monotone. It is
left for future research how to make the algorithm faster. It finds good so-
lutions fast but takes long time to prove the optimality. Thus, there may be
some better way to discard the infeasible paths and update the lower bounds
faster. One idea is to combine the search with finding the maximum payoffs
or the payoff set as a whole, which helps cut some of the infeasible paths. For
example, if it is known that certain high payoffs cannot be achieved in the
game, then the paths that require such continuation payoffs can be discarded.
Moreover, it would be interesting to examine how the results change if the
players are allowed to randomize between the pure actions.

Acknowledgements

Kimmo Berg acknowledges funding from Emil Aaltosen Säätiö through Post
doc -pooli.

References

Abreu, D. (1988). On the theory of infinitely repeated games with discounting.
Econometrica, 56 (2), 383–396.

Abreu, D., Pearce, D., & Stacchetti, E. (1986). Optimal cartel equilibria with
imperfect monitoring. Journal of Economic Theory, 39 (1), 251–269.

Abreu, D., Pearce, D., & Stacchetti, E. (1990). Toward a theory of discounted
repeated games with imperfect monitoring. Econometrica, 58 (5), 1041–
1063.

Abreu, D., & Rubinstein, A. (1988). The Structure of Nash Equilibrium in
Repeated Games with Finite Automata. Econometrica, 56 6, 1259–1281.

Abreu, D., & Sannikov, Y. (2013). An algorithm for two-player games with
perfect monitoring. Theoretical Economics, in press.

Berg, K. (2012). Characterization of equilibrium paths in discounted stochastic
games. Working paper.

Berg, K. (2013). Extremal Pure Strategies and Monotonicity in Repeated
Games. Working paper.

Berg, K., & Kitti, M. (2012). Equilibrium paths in discounted supergames.
Working paper. http://sal.aalto.fi/publications/pdf-files/mber09b.pdf

Berg, K., & Kitti, M. (2014). Fractal geometry of equilibrium payoffs in dis-
counted supergames. Fractals, 22 (4). http://sal.aalto.fi/publications/pdf-
files/pber14.pdf

Berg, K., & Kitti, M. (2013). Computing equilibria in discounted 2 × 2 su-
pergames. Computational Economics, 41, 71–78.

Berg, K., & Kärki, M. (2014). How patient the players need to be to get all
the relevant payoffs in the symmetric 2× 2 supergames? Working paper.

18 Kimmo Berg and Markus Kärki

Berg, K., & Schoenmakers, G. (2014). Construction of randomized subgame-
perfect equilibria in repeated games. Working paper.

Burkov, A., & Chaib-draa, B. (2010). An Approximate Subgame-Perfect Equi-
librium Computation Technique for Repeated Games. Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, 729–736.

Cronshaw, M. B. (1997). Algorithms for finding repeated game equilibria.
Computational Economics, 10, 139–168.

Cronshaw, M. B., & Luenberger, D. G. (1994). Strongly symmetric sub-
game perfect equilibria in infinitely repeated games with perfect monitoring.
Games and Economic Behavior, 6, 220–237.

Daskalakis, C., Goldberg, P. W., & Papadimitriou, C. H. (2006). The Complex-
ity of Computing Nash Equilibrium. Proc. 38th Ann. ACM Symp. Theory
of Computing (STOC), 71–78.

Gossner, O., & Hörner, J. (2010). When is the lowest equilibrium payoff in a
repeated game equal to the minmax payoff? Journal of Economic Theory,
145 (1), 63–84.

Herings, P.J.-J., & Peeters, R. (2010). Homotopy methods to compute equi-
libria in game theory. Economic Theory, 42 (1), 119–156.

Hörner, J., Sugaya, T., Takahashi, S., & Vieille, N. (2011). Recursive Meth-
ods in Discounted Stochastic Games: An Algorithm for δ 7→ 1 and a Folk
Theorem. Econometrica, 79 (4), 1277-1318.

Judd, K., Yeltekin, Ş., & Conklin, J. (2003). Computing supergame equilibria.
Econometrica, 71, 1239–1254.

Judd, K., & Yeltekin, Ş. (2011). Computing Equilibria of Dynamic Games.
Working paper.

Kalai, E., & Stanford, W. (1988). Finite Rationality and Interpersonal Com-
plexity in Repeated Games. Econometrica, 56 (2), 397–410.

Littman, M. L., & Stone, P. (2005). A polynomial-time Nash equilibrium al-
gorithm for repeated games. Decision Support Systems, 39: 55–66.

Mailath, G. J., & Samuelson, L. (2006). Repeated games and reputations: long-
run relationships. Oxford University Press.

Porter, R., & Nudelman, E., & Shoham, Y. (2008). Simple search methods for
finding a Nash equilibrium. Games and Economic Behavior, 63 (2), 642–662.

Sandholm T. (2007). Perspectives on multiagent learning. Artificial Intelli-
gence, 171, 382–391.

Sandholm T. (2012). The state of solving large incomplete-information games,
and application to poker. AI Magazine, 31 (4), 13–32.

Sandholm, T., & Gilpin, A., & Conitrzer, V. (2005). Mixed-integer program-
ming methods for finding Nash equilibria. Proceedings of the 20th National
Conference on Artificial Intelligence (AAAI). 495–501.

Salcedo, B., & Sultanum, B. (2010). Computation of subgame-perfect equi-
libria of repeated games with perfect monitoring and public randomization.
Working paper.

Shoham, Y., & Leyton-Brown, K. (2008). Multiagent Systems: Algorithmic,
Game Theoretic and Logical Foundations. Cambridge University Press.

