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Abstract

This paper examines the subgame-perfect equilibria in the symmetric 2× 2 su-
pergames. We extend the folk theorem by solving the smallest discount factor
values when the players obtain all the feasible and individually rational pay-
offs. This enables us to determine all the equilibrium payoffs for high discount
factor values, which is in general a difficult task since the payoff sets are compli-
cated for patient players. We study how the different assumptions affect the set
of equilibria by comparing the payoff sets in pure, randomized and correlated
strategies. Moreover, we analyze how exactly the stage game’s payoffs affect the
required level of patience and organize the games into few classes. We find that
the bounds generally depend on how large the payoff set is compared to the set
of feasible payoffs and that the bounds are quite moderate for many games. We
also observe discontinuities in the bounds, which means that small changes in
the stage game’s payoffs may affect dramatically the equilibrium payoffs.

Keywords: repeated game, folk theorem, discount factor, 2x2 games, payoff
set, correlated equilibrium
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————————————————-

1. Introduction

The folk theorem states that any feasible and individually rational payoff is
an equilibrium, when the players are patient enough (Friedman, 1971; Fudenberg
and Maskin, 1986; Abreu et al., 1994; Fudenberg and Tirole, 1991; Mailath and
Samuelson, 2006); these payoffs are referred to relevant payoffs from now on.
However, in many applications the players are not arbitrarily patient but they
rather have some intermediate values of the discount factor. The question then
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arises: what is the set of subgame-perfect equilibria for these values? This
is a difficult question in general and this paper finds the threshold value for
the discount factor when the payoff set covers all the relevant payoffs in the
symmetric 2× 2 supergames. Thus, we extend the folk theorem in these games
and find the games where extreme patience is required to fill the payoff set.

The theory of infinitely repeated games was developed by Abreu (1986, 1988)
and Abreu et al. (1986, 1990). These papers characterize the subgame-perfect
equilibria with a set-valued fixed-point equation in pure and correlated strate-
gies, which forms the base of our analysis. Recently, this theory was extended
to randomized strategies in Berg and Schoenmakers (2014), which enables us to
compare the three different settings. Moreover, the fixed-point characterization
has been utilized in the computation of the payoff set (Cronshaw and Luen-
berger, 1994; Cronshaw, 1997; Judd et al., 2003; Sannikov, 2007; Burkov and
Chaib-draa, 2010; Salcedo and Sultanum, 2012; Abreu and Sannikov, 2014).
These methods work well when the discount factors are small but in general
they provide only approximations of the payoff set. They also assume public
randomization, which makes the payoff set convex and simplifies the task of
computation dramatically.

In pure strategies, Berg and Kitti (2012, 2013) have developed a novel
method for producing the equilibrium paths beside the payoffs, i.e., the method
also finds the possible action sequences that can be played in the game. However,
it faces the same problem as the earlier methods; it is possible to find all the
equilibria when the discount factors are small or moderate, but the equilibrium
paths increase fast and they get more complicated when the players become
more patient. This paper approaches the problem from the other end. We find
the high discount factor values when the payoff set is full. We note, however,
that even though the payoff set is then known for these values, it does not mean
that the equilibrium paths are known, i.e., the folk theorem does not imply that
all the action sequences are subgame-perfect equilibrium paths. Nevertheless, it
is possible to find some of the equilibrium paths using our method.

This paper examines analytically when the sets of attainable payoffs (Abreu
et al., 1986, 1990) cover all the relevant payoffs and this is the condition when the
payoff set is full. This idea was used in Stahl (1991) who solved the bounds for
the discount factors in a class of prisoner’s dilemma games under public random-
ization; see also Sections 2.5.3 and 2.5.6 in Mailath and Samuelson (2006). Here,
we examine systematically all the symmetric 2×2 supergames in pure, random-
ized and correlated strategies. The games are organized into a few classes based
on the stage game’s payoffs. We provide a figure of the bounds and the classes
in these games. From this figure, it is easy to see when a high level of patience
is required and to make the comparison between the different strategies.

The paper is structured as follows. In Section 2, the repeated game model is
presented and the properties of equilibria is analyzed. Sections 3-5 examine the
discount factor bounds in pure, correlated and randomized strategies. Section
6 is the conclusion.
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2. The repeated game

2.1. Stage games

In a repeated game, a stage game is played repeatedly by the same players.
A stage game is defined by a finite set of players N = {1, . . . , n}, a finite set of
pure actions for each players Ai, i ∈ N , which form the set of pure action profiles
A = ×i∈NAi, and the players’ utilities for each action profile u : A 7→ Rn. Also,
a pure action of player i is called ai ∈ Ai and a pure action profile is called
a ∈ A.

Each player i ∈ N may randomize over his pure actions ai ∈ Ai. This defines
a mixed action qi such that qi(ai) ≥ 0 for each ai ∈ Ai and

∑
ai∈Ai

qi(ai) = 1.
The set of probability distributions over Ai is called Qi and Q = ×i∈NQi. A
mixed action profile is denoted by q = (q1, . . . , qn) ∈ Q. The support of a mixed
action is the set of pure actions that is played with a strictly positive probability:
Supp(qi) = {ai ∈ Ai|qi(ai) > 0}. We also define Supp(q) = ×i∈NSupp(qi) and
for each a ∈ Supp(q), we let πq(a) be the probability that the action profile
a is realized if the mixed action profile q is played: πq(a) =

∏
j∈N qj(aj). In

pure strategies, we make the restriction that qi(ai) = 1 for one action ai ∈ Ai.
In correlated pure strategies, the players observe a public lottery and they can
condition their pure action based on this signal. From now on, by correlated
strategies we mean correlated pure strategies.

The stage game payoffs are given by the function u : Q 7→ Rn. For example,
if the players choose a mixed action profile q ∈ Q, then player i receives an
expected payoff of

ui(q) =
∑
a∈A

ui(a)πq(a). (1)

Let q−i ∈ Q−i = ×j∈N,j ̸=iQj denote player i’s opponents’ actions. Now, an
action profile q is a Nash equilibrium in the stage game if no player has a
profitable deviation, i.e.,

ui(q) ≥ ui(q
′
i, q−i) for all i ∈ N and q′i ∈ Qi. (2)

2.2. Repeated games

We examine a model where the stage game is repeated infinitely many times
and these games are sometimes called as supergames. We assume that the play-
ers observe all the past realized pure actions but not the possible randomizations.
This public past play is denoted by the set of histories Hk = Ak =

∏
k A, where

H0 = A0 = {∅} is the empty set and corresponds to the beginning of the game.
Thus, the history contains all the pure actions that were played in the previous
stages. The set of all possible histories is H =

∪∞
k=0 H

k. A behavior strategy σi

of player i ∈ N is a mapping that assigns a probability distribution over player
i’s pure actions for each possible history σi : H 7→ Qi. The set of player i’s
strategies is Σi. The players’ strategies form a strategy profile σ = (σ1, . . . , σn),
a strategy profile of all players except player i is denoted by σ−i and the set of
strategy profiles is given by Σ = ×i∈NΣi. A pure strategy assigns a pure action
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for each possible history σi : H 7→ Ai. In correlated pure strategies, the history
also contains a public signal for each of the current and the previous stages and
the correlated strategy assigns a pure strategy for each possible history.

We assume that the players discount the future payoffs with a common
discount factor δ ∈ [0, 1). They have the same discount factor as we examine
the symmetric games. The expected discounted payoff of a strategy profile σ to
player i is

Ui(σ) = E

[
(1− δ)

∞∑
k=0

δkuk
i (σ)

]
, (3)

where uk
i (σ) is the payoff of player i at stage k induced by the strategy profile σ.

A strategy profile σ is a Nash equilibrium if no player has a profitable deviation,
i.e.,

Ui(σ) ≥ Ui(σ
′
i, σ−i) for all i ∈ N, and σ′

i ∈ Σi, (4)

and it is a subgame-perfect equilibrium (SPE) if it induces a Nash equilibrium
in every subgame, i.e.,

Ui(σ|h) ≥ Ui(σ
′
i, σ−i|h) for all i ∈ N, h ∈ H, and σ′

i ∈ Σi, (5)

where σ|h is the restriction of the strategy profile after history h ∈ H. From
now on, by equilibrium we mean subgame-perfect equilibrium.

2.3. The characterization of equilibria

Let V be the compact set of SPE payoffs and we also use V (δ) when we
want to emphasize the players’ discount factor δ. By V P , V C and V M we refer
to the equilibria in pure, correlated and randomized strategies, respectively. We
begin with the case of pure strategies, then shortly cover the correlated pure
strategies and then consider the randomized strategies.

The player i’s minimum equilibrium payoff, which is also called the punish-
ment payoff, is denoted by v−i (δ) = min{vi : v ∈ V (δ)}, when V (δ) is non-empty;
and this is the case in the symmetric 2×2 supergames. Similarly, the maximum
equilibrium payoff is v+i (δ) = max{vi : v ∈ V (δ)}. The minimax payoff is

vi = min
q−i∈Q−i

max
qi∈Qi

ui(qi, q−i). (6)

Note that the minimax payoffs can be different in pure and randomized strate-
gies. However, it holds under perfect monitoring that v−i (δ) ≥ vi, ∀i ∈ N
(Fudenberg and Tirole, 1991; Mailath and Samuelson, 2006). The player’s min-
imum and maximum payoffs in a compact set W are denoted by v−i (W ) and
v+i (W ), respectively. Moreover, vs(W ) = max{vi ∈ W, vi = vj , ∀j ∈ N} is the
maximum symmetric payoff in set W .

Let us now consider the pure strategies. Abreu (1988), see also Abreu et al.
(1986, 1990); Cronshaw and Luenberger (1994), has shown that all the equilib-
rium outcomes can be obtained in simple strategies. These strategies consist of
n+1 paths: an initial path that the play follows and a punishment path for each
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player that gives the player’s minimum equilibrium payoff. The players follow
the current path unless a single player deviates from it. If this happens, the
play switches to the punishment path of the deviator. If more than one player
deviates, then the play stays on the current path and there is no punishment.
Since we examine a non-cooperative game, we do not need to consider devia-
tions by more than one player. Abreu has shown that a path is an equilibrium
if and only if it does not have any profitable deviations when the deviations
leads to the players’ smallest equilibrium payoffs. Furthermore, the payoff set is
characterized by a set-valued fixed-point equation and the set is self-generating.
These results are now shortly presented and for more details we refer to Section
2 in Mailath and Samuelson (2006) and Berg and Kitti (2014).

A pair (a,w) of an action profile a ∈ A and a continuation payoff w ∈ W is
admissible with respect to W if it satisfies the incentive compatibility conditions

(1− δ)ui(a) + δwi ≥ max
a′
i∈Ai

[
(1− δ)ui (a

′
i, a−i) + δv−i (W )

]
, ∀i ∈ N. (7)

This condition means that it is better for player i to take action ai and get the
payoff wi than to deviate and then obtain v−i (W ).

For a set of continuation payoffs W , the set of feasible action profiles is
denoted by

F δ(W ) = {a ∈ A such that (a,w) is admissible for some w ∈ W}. (8)

For a ∈ F δ(W ), we denote the set of possible continuation payoffs as

Cδ
a(W ) = {w ∈ W such that (a,w) is admissible}. (9)

Let Dδ
a : Rn 7→ Rn be an affine mapping that corresponds to an action profile

a ∈ A and a discount factor δ

Dδ
a(w) = (I − T )u(a) + Tw, (10)

where I is an n × n identity matrix and T is an n × n diagonal matrix with
the discount factor δ on the diagonal. The mapping Dδ

a is also defined for sets;
then the addition is the Minkowski sum and Dδ

a(∅) = ∅. Finally, we denote
the attainable payoffs that start with an action profile a ∈ A by Bδ

a(W ) =
Dδ

a(C
δ
a(W )).

Theorem 1. The set of pure-strategy subgame-perfect equilibrium payoffs V P

is the unique largest compact set satisfying the fixed-point

W = Bδ(W )
.
=

∪
a∈F δ(W )

Bδ
a(W ). (11)

For proof, see Theorem 2 in Abreu et al. (1990), Theorem 1 in Cronshaw and
Luenberger (1994), Corollary 2.5.1 in Mailath and Samuelson (2006) or Berg and
Kitti (2014). The theorem tells that the payoff set V P is a fixed-point of the
iterated function system defined by Dδ

a, a ∈ A and the incentive compatibility

5



conditions (7). Note that the sets V P and Bδ
a(V ) are compact (Abreu et al.,

1986, 1990; Mailath and Samuelson, 2006). The results of this paper are based
on analyzing the sets Bδ

a(V ) in the symmetric 2× 2 supergames.
Now, we shall consider the correlated pure strategies. Let co(W ) denote the

convex hull of W . The payoff set under public correlation V C is given by the
largest set satisfying

V = Bδ .
= co

 ∪
a∈F δ(V )

Bδ
a(V )

 . (12)

Finally, we describe the equilibria in randomized strategies. The first ob-
servation with the randomized strategies is that the player must be indifferent
between the actions in his support. For example, assume that the players are
supposed to play an action profile q = (q1, q2, . . . , qn) as a part of an equilibrium,
then all of the actions in Supp(qi) must give the same expected payoff to player
i. Otherwise, he could just play an action profile in Supp(qi) that gives the
highest payoff and such a deviation could never be detected. Let us denote the
most profitable deviation outside Supp(qi), which is given by the pure action
that yields

di(q) = max
a′
i∈Ai\Supp(qi)

ui(a
′
i, q−i).

If Supp(qi) = Ai, then there are no outside deviations for player i and di(q) =
max ∅ = −∞. Moreover, if di(q) < ui(q), then there are no profitable outside
deviations, since both the current stage and the continuation payoffs, given by
the punishment payoffs after an observable deviation, are lower.

We say that a pair (q, w) consisting of an action profile q and an expected
continuation payoff w is admissible with respect to W if it satisfies the incentive
compatibility (IC) conditions

(1− δ)ui(q) + δwi ≥ (1− δ)di(q) + δv−i (W ),

for all i ∈ N . Now, every action profile in a ∈ Supp(q) has a positive probability
of being realized and each of them could be followed by a different continua-
tion play and corresponding payoff x(a). Thus, given an action profile q, an
expected continuation payoff w can be formed by taking for each a ∈ Supp(q)
a continuation payoff x(a) ∈ W such that

w =
∑

a∈Supp(q)

x(a)πq(a). (13)

Consider a stage game where the payoff of action profile a ∈ A is given by

ũδ(a)
.
= (1− δ)u(a) + δx(a),

i.e., the continuation payoffs x(a) are included in the stage game payoffs. Let
M(x) be the set of all equilibrium payoffs in this stage game. Now, we are ready
to state the characterization for the subgame-perfect equilibrium payoffs (Berg
and Schoenmakers, 2014).
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Theorem 2. The payoff set V M is the largest fixed point of B:

W = B(W )
.
=

∪
x∈W |A|

M(x), (14)

where (q, w) is admissible with respect to W , w is formed by the continuation
payoffs x as in Eq. (13) and q is an equilibrium in the stage game defined by
the continuation payoffs x.

Note that the complexity of computing all randomized equilibria is much
higher compared to the pure-strategy equilibria. Each iteration of B goes
through all Nash equilibria of all permutations of all possible continuations
payoffs after each action profile over all action profiles in A.

Proof. We show that i) there are no profitable unilateral deviations from the
profiles in the fixed-point construction and ii) the strategies outside the con-
struction are not equilibria.

Notice that we only need to consider deviations in the stage games. If no
players has a profitable deviation in any of the stage games, then there are no
profitable deviations in the continuation play and all the continuation payoffs
x(a), a ∈ A, are produced by an equilibrium. Indeed, there are no profitable
deviations in any stage game, since

1. The incentive compatibility conditions guarantee that no player should
ever deviate to an action outside the support of his prescribed mixed ac-
tion. Such a deviation by player i will be observed and will be followed by
the punishment strategies and the minimum equilibrium payoff to player
i.

2. No player can profit from deviating to a mixed action within the support
of his prescribed mixed action. This is guaranteed by the fact that the
prescribed profile is a Nash equilibrium in the stage game and thus each
player must be indifferent between the pure actions that are in the carrier
of his mixed action.

Thus, there are no profitable deviations from the profiles produced by the
construction.

The strategies that are not produced by the fixed-point characterization are
either not Nash equilibrium in the stage game or they use continuation payoffs
that are not admissible. If the continuation payoffs are not admissible then
it means that the strategies are not subgame-perfect and thus not equilibria.
Similarly, if the strategies are not Nash equilibria in the stage game then some
players have profitable deviation and these strategies cannot be equilibria either.

2.4. Monotonicity results

The aim of this paper is to study when the payoff set covers all the relevant
payoffs. In the previous subsection, we gave the necessary and sufficient con-
ditions for this to happen; the sets B(V ), B(V ) and B(V ) need to cover the
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relevant payoffs. Now, we show the monotonicity result, i.e., once the condition
holds for a given discount factor, it also holds for more patient players. Then
the remaining task is to find the smallest discount factor when this happens.

In this subsection, by B(V ) we refer to the sets B(V ), B(V ) and B(V ),
depending on which strategies are in question. A set W is called self-generating
if W ⊆ Bδ(W ). The following result follows directly from Theorems 1 and 2
and Eq. (12).

Proposition 1. If a bounded set W is self-generating then Bδ(W ) ⊆ V (δ).

The following shows that the payoff set is monotone in the discount factor
when it is convex (Abreu et al., 1990; Sorin, 1986; Mailath and Samuelson, 2006;
Berg, 2013).

Theorem 3. Suppose V (δ1) is convex then V (δ1) ⊆ V (δ2) for δ2 ≥ δ1.

Proof. By Proposition 1, it is enough to show that for all v ∈ V (δ1) it holds that
v ∈ Bδ2(V (δ1)). In pure and correlated strategies, it is enough to show that
there is an admissible pair (a,w2) of an action profile a and a continuation payoff
w2 ∈ V (δ1) such that v = (1− δ2)u(a) + δ2w

2 for every v ∈ V (δ1), i.e., (a,w
1)

is admissible for a continuation payoff w1 ∈ V (δ1) and v = (1− δ1)u(a) + δ1w
1.

By denoting δ2 = δ1 + ϵ, we can solve

(δ1 + ϵ)w2 = δ1w
1 + ϵu(a).

This means that w2 is a convex combination of w1 and u(a). Combining with
the result that v is between u(a) and both w1 and w2, we get that w2 is between
w1 and v. Thus, it follows that w2 ∈ V (δ1) by convexity and v, w1 ∈ V (δ1).

In randomized strategies, it is enough to show that the same stage game
payoffs can be achieved with δ2, i.e., the suitable continuation payoffs are in
V (δ1) and admissible. The proof is the same as above but applied to all action
profiles in the stage game.

Finally, we need to check the admissibility with δ2. The only remaining
thing to check is that the punishment payoff is not increasing and it is not since
v−i (V (δ1)) ∈ Vi(δ1) for all i ∈ N and together with the above result we have
v−(V (δ2)) ≤ v−(V (δ1)).

Since the set of reasonable payoffs is convex, the above result means that
once the reasonable payoffs are obtained, they are obtained for more patient
players as well. This also implies that the payoff sets are always monotone
in correlated strategies. Furthermore, it is also possible to show that convex
self-generating sets are monotone. The proof is similar to Theorem 3.

Proposition 2. Suppose a self-generating set W ⊆ V (δ1) is convex then W ⊆
V (δ2) for δ2 ≥ δ1.
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Figure 1: Symmetric ordinal 2× 2 games with parameters b and c.

2.5. Reasonable and punishment payoffs in symmetric 2× 2 games

The twelve symmetric strict ordinal 2 × 2 games are presented in Figure
1, see Robinson and Goforth (2005) for the taxonomy. The two actions are C
(cooperate) and D (defect), and they give the players the payoffs a = 1, b, c
and d = 0; the corresponding action profiles are also denoted by letters a, b, c, d.
For example, if the players choose actions (C,D), i.e., the action profile b, the
players receive payoffs b and c. Each of the twelve regions represents a certain
class of games: 1. prisoner’s dilemma, 2. chicken, 3. leader, 4. battle of the
sexes, 5. stag hunt, 6. no conflict, 9. coordination and their anti-games.

Let V † = co (v ∈ Rn : ∃q ∈ A s.t. v = u(q)) be the set of feasible payoffs and
the reasonable payoffs

V ∗ = {v ∈ V † : vi ≥ vi, i ∈ N}

contains only the individual rational payoffs. Note that the minimum equilib-
rium payoffs v−(δ) may be strictly higher than the minimax payoffs v and then
it is impossible to obtain all the reasonable payoffs. We could have defined the
reasonable payoffs using the minimum payoffs, but this does not make a differ-
ence in the symmetric 2×2 supergames, as will be shown below. The minimum
payoffs in pure strategies are studied in Berg (2013), where it is shown that the
equilibrium paths need not be monotone in the discount factor; see also Berg
and Kärki (2014) for an improved algorithm for finding the punishment paths
and payoffs for different discount factors. This non-monotonicity result means
that there are games where a path is an equilibrium for one discount factor but
is no longer an equilibrium for a higher discount factor value.

Let us denote the discount factor bound by

δF = min{δ : V (δ) = V ∗}, (15)

which gives the smallest discount factor value when the payoff set covers all the
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reasonable payoffs. Note that V ∗ is convex and thus V (δ) = V ∗ for all δ ≥ δF

by Theorem 3.
The minimum payoffs in pure strategies are equal to the minimax payoffs

for most of the symmetric 2 × 2 supergames for all discount factors, because
the minimax payoff is given by a stage game Nash equilibrium. No conflict,
its anti-game and anti-stag hunt are the only exceptions. In these games, the
minimum payoff is between the minimax and the maximum payoff depending
on the discount factor (Berg, 2013; Berg and Kärki, 2014), i.e., vi ≤ v−i (δ) ≤
v+i (V

†). For small discount factor values the minimum payoff is high, but when
the players are patient enough it is possible to punish the other player with the
minimax value. The following shows sufficient conditions for the discount factor
such that the minimum payoffs are the minimax values.

In no conflict game, it is possible to play the punishment path b∞, or symmet-
rically c∞, giving the minimax payoff if it holds that the payoff c ≥ (1− δ)+ δb;
the right-hand side gives the best deviation to payoff 1 that is followed by the
punishment payoff b. From this we get that v−(δ) = v when δ ≥ (1− c)/(1−b).
This value does not affect the results since it is lower than the bound δF that
we will later find for the no conflict games.

In anti-no conflict and anti-stag hunt games, it holds that v−(δ) = v when
δ ≥ 1/(2 − b). This is the discount factor value when Bd(V

∗) intersects with
Ba(V

∗) and the line from u(d) to u(a) belongs to the payoff set, and this guar-
antees that the minimax value is exactly obtained in the game. Again, this
value does not affect the results since in these games δF → 1 and the reasonable
payoffs are not obtained for any δ < 1.

The minimax payoffs in mixed strategies are the same as in pure strategies,
except in leader, battle of the sexes, coordination and anti-coordination games.
In these games, the minimax payoff is given by a mixed strategy that is a Nash
equilibrium in the stage game. Thus, v−(δ) = v for all δ in mixed strategies
in these games. We will show in Section 5 that the reasonable payoffs are not
obtained for any δ < 1 in these games.

2.6. Sets of attainable payoffs

We give few more definitions and show some results related to the sets
Ba(W ), a ∈ A. Let vA(W ), vB(W ), vC(W ) and vD(W ) be the corners of
the set W corresponding to payoffs u(a), u(b), u(c) and u(d). For example, if
u(a) and u(b) are the payoffs in the northeast and northwest corners of V †, then
vA(Bb(δ)) and vB(Bb(δ)) are the northeast and northwest corners of the set
Bb(δ); see Fig. 4(a). Moreover, let

vM (δ) = (1− δ)max
a∈A

ui(a) + δv−i (δ). (16)

This is the right-hand side of Eq. (7) for the column that contains the maximum
payoff in the game. The following remark gives the relation of vM to certain
sets Ba, a ∈ A; see, e.g., Ba and Bc in Fig. 4(a).

Remark 1. If Ba(δ) ̸= ∅, a ∈ A, then vM (δ) = v−i (Ba(δ)) for all a and i
where player i can deviate to the maximum payoff of the stage game.
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The following result describes how the sets Ba, a ∈ A, may cover the bound-
aries of V ∗. The result implies that we need as many sets Ba, a ∈ A, to cover
the reasonable payoffs as there are corner points in V ∗.

Proposition 3. The set Bδ
a(V

∗), a ∈ A, may only cover the corner point of V ∗

closest to u(a). It cannot cover the other corner points or the boundary of V ∗

between these corner points.

Proof. By the definition of Dδ
q , the set V

∗ is contracted by δ and is thus strictly
smaller than V ∗. The translation part (I − T )u(a) moves the set towards u(a).

Finally, we note that it is enough to cover the corner points of a polygon in
order to cover it. It follows from the fact that a convex set contains all of its
convex combinations.

Proposition 4. Let S be a convex set. If {v1, . . . , vk} ⊆ S, then co({v1, . . . , vk}) ⊆
S.

3. Equilibria in pure strategies

Theorem 1 implies that the payoff set covers the reasonable payoffs when
the sets Bδ

a, a ∈ A, cover all the payoffs in V ∗. To find the bound δF , we need
to find the smallest discount factor for this to happen. The results are based
on determining the sets Bδ

a analytically for the four action profiles in the 2× 2
supergames. The main idea is to find the last payoff point vF in the payoff set
that is covered when the discount factor is increased to δF . The bound δF is
typically solved from a condition that two sets, say Bb and Bc intersect. In the
proofs, we show two parts: the point vF is not covered for a smaller discount
factor value and all the other reasonable payoffs are covered for the given value.
Thus, we get the necessary and sufficient conditions for δF .

The main results1 are given in Table 1; it gives the discount factor δF in
the symmetric 2× 2 supergames in pure strategies. The games can be classified
into five classes; see the left parts of Figs. 2 and 3. The classes are based on
the location of the payoff vF : in Class I, vF is found on the upper edge of V ∗

between u(a) and u(b), on the bottom edge between u(b) and u(d) in Class II,
and in the middle in Classes IIIa-d. The games in Class IV do not get covered for
any δ < 1 and the games in Class V are covered for all 0 ≤ δ < 1. Note that the
class boundaries cross the game boundaries. For example, the triangle-shaped
prisoner’s dilemmas and chicken games all belong to Class IIIb. The proofs are
given in the following subsections. Note that the b and c-axes are scaled with
a tangent function in Figure 3 in order to show both small and large values at

1FOR REVIEWERS: see http://tinyurl.com/q8c9x3e for mathematica applets that help
to check the results. If you do not have mathematica, you can install free CDF player.
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Figure 2: Classification based on δF with pure (left) and correlated pure (right) strategies.

Table 1: The bounds of the discount factor δF in pure strategies.

Game Class 1 Class 2 Class boundary

Prisoner’s dilemma I: δF = c−b
1+c−b

IIIb: δF = 2c
b+3c c = 2− b

Chicken IIId: δF = c
1+c−b

IIIb: δF = 2c
3c−b

Leader IIIb: δF = 2c
3c−b

Battle of the sexes IIIc: δF = 2b−2
3b−c−2

Anti-PD
V: δF = 0 IIIc: δF = 2b−2

3b−c−2
c = 2− b

Anti-chicken
Stag hunt

II: δF = 1−b
1−2b+c IIIa: δF =

3−3b−2c+b(b+c)

5−4b+b2−3c+bc
c = 1 + (b− 1)

√
b

b−2Coordination

No conflict II: δF =
1+b(c−2)

1+b(b−3)+c

Anti-coordination
IV: δF = 1Anti-no conflict

Anti-stag hunt

the same time, i.e.,

b′ =
1

2
√
1− 2/

√
5
tan (πb− π/2) + 1/2. (17)

Let us analyze the results. The smallest value δF = 0 is obtained in Class V.
These include anti-games, where V † is an obtuse-angle quadrilateral. These are
not particularly interesting games, since V ∗ is a single point. Thus, the payoff
set is full for all discount factors in these games.

The smallest meaningful value δF = 1/2 is in point z1, between Classes
I, II, IIIa and IIId; see Fig. 2. These are the games where V ∗ is close to a
rectangle and the player’s own action has a little effect on the payoff. Moreover,
the smallest value over the coordination games is in point z2, between Classes
II and IIIa, where δF ≈ 0.687 and b ≈ −0.84. Finally, the smallest value is
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Figure 3: Values of δF with pure (left) and correlated pure (right) strategies.

δF = 2/3 in all triangular games. These are the games in Classes IIIb and IIIc,
where V ∗ is a triangle. The bounds are achieved in the limit when b → ∞ or
c → ∞. The smallest values are achieved near b = 0 in prisoner’s dilemma and
chicken games, near b = 1 in leader games, near c = 1 in battle of the sexes and
anti-chicken games, and near c = 0 in anti-PD games.

For all anti-coordination, anti-no conflict and anti-stag hunt games, it holds
that δF → 1. This means that the payoff set never gets covered and the payoff
set is not full for any δ. The same result holds for some payoff parameters in
all regions even if they are divided both by the classes and the games, except in
Class V where δF = 0 for all payoffs. For example, δF → 1 holds in the following
cases: near the c = b diagonal, on the limit when b → −∞ for prisoner’s
dilemma, stag hunt and coordination games, and near the line c = 2 − b for
anti-PD and anti-chicken games. Thus, we cannot find a limit for δF for any
class or game, except for Class V. This means that we cannot extend the folk
theorem unless these extreme payoff parameters can be ruled out.

We can observe that the value of δF depends on how large V ∗ is compared
to V †. When V ∗ is small, it is difficult to play certain actions in the game
and the value of δF is large, i.e., a high level of patience is required. For
example, it is difficult to play the actions b and c in a prisoner’s dilemma when
b → −∞. Geometrically, this means that V ∗ stays almost the same but V † keeps
increasing, making the proportion of V ∗ to V † smaller. On the other hand, if
V ∗ is large then δF is smaller. Note that Classes IV and V are exceptions, where
δF is a constant and thus independent of V ∗ and V †.

What about the boundaries between the classes? On the c = b diagonal,
δF = 1/2 when b = c ≤ 0 and δF = 0 when b = c > 0. This means that
there is a discontinuity of δF on the diagonal in all directions. There is also a

13



discontinuity on line c = 2− b between Classes I and IIIb (prisoner’s dilemma),
and between IIIc and V. On this line, the boundary belongs to Class IIIb when
b < 0 and to Class V when b > 1. The discontinuity between the prisoner’s
dilemma games is surprising and it shows that a small geometric change from
the triangle-shape to the quadrangle-shape may affect the filling of the Pareto
efficient frontier of the payoff set. Furthermore, the boundary belongs to Class
V when b = 1 and c < 1 and thus there is a discontinuity between Classes
IV and V. The other class boundaries are continuous in δF . The discontinuity
means that small changes in the payoffs can affect dramatically the filling of the
payoff set and how large δF is. The discontinuities are shown in Figure 2 by
thick grey lines.

3.1. Class I

This class is defined by parameters 1 < c < 2 − b and b < 0. These are
the prisoner’s dilemmas where V ∗ is a quadrilateral with an obtuse angle in
u(a) corner; see Fig. 4(a). It is enough to examine the upper half of V ∗ where
v2 > v1 since V ∗ is symmetric with respect to the center line. Thus, the last
point vF that is covered is only defined in the upper half of V ∗.

vMvsHBdL

vAHBbH∆LL

vBHBaH∆LL

Bd Bc

Bb Ba

vI
F

(a) Class I (b) Class IIIc

Figure 4: Attainable payoffs in Classes I and IIIc.

The point vFI in Class I is located on the upper edge between u(a) and
u(b). This point and the corresponding discount factor δFI are solved from the
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intersection of Ba and Bb. It is enough to consider only player 1’s payoffs:

vFI = vB(Ba(δ
F )) = vA(Bb(δ

F ))

⇒ (1− δF )c+ δF · 0 = (1− δF )b+ δF · 1

⇒ δFI =
c− b

1 + c− b
, (18)

vFI =

(
c

1− b+ c
,

b− 2c

b− c− 1

)
. (19)

On the second line, the first payoff vB1 (Ba(δ
F )) can be solved from the right-

hand side of the incentive compatibility conditions.
We first show that vF /∈ Bδ

a(V
∗), a ∈ A, if δ < δF . Since the sets Ba and

Bb intersect at δF , it means that vF does not belong to either Ba or Bb for
δ < δF . Moreover, the sets Bc and Bd cannot cover vF on the boundary of V ∗

by Proposition 3.
Now, let us show that every v = {v2 ≥ v1, v ∈ V ∗} ∈ Bδ

a(V
∗) for some

a ∈ A and δ = δF . We divide V ∗ into three regions. If v1 ≥ vM (δF ) then
v ∈ Ba(δ

F ) since vM (δ) coincides with v−1 (Ba(V
∗)) for all δ ≥ δF by Remark

1. If v1 ≤ vM (δF ) and v2 ≤ vM (δF ) then we show that v ∈ Bd(δ
F ). We

apply Proposition 4 and show that all corner points (vM (δF ), vM (δF )), (0, 0)
and (0, vM (δF )) belong to Bd. (0, 0) is the Nash equilibrium and belongs to Bd

for any δ. Also, (0, vM (δF )) belongs to Bd if (vM (δF ), vM (δF )) belongs to Bd,
because vB2 (Bd) is higher than vA2 (Bd) due to c > 1. So for the last corner, we
need to show that vs(Vd(δ

F )) ≥ vM (δF ). It holds that vs(Vd(δ
F )) = δF and

vM (δF ) = (1− δF )c and the above condition holds if δF ≥ (1− δF ). Using Eq.
(18), this is equal to b ≤ 0 and this is true in this class.

Finally, if v1 ≤ vM (δF ) and v2 ≥ vM (δF ) then we show that v ∈ Bb(δ
F )

by Proposition 4. The corner points are vB(V ∗), (0, vM (δF )), (vM (δF ), vM (δF ))
and vB(Ba(δ

F )). vB(Ba) belongs toBb trivially by the definition of vF . vB(V ∗) ∈
Bb since vF is at the upper edge and Bb covers the edge all the way to vB(V ∗).
(0, vM (δF )) ∈ Bb since vM (δ) coincides with v−2 (Bb(V

∗)) for all δ ≥ δF when
c > b by Remark 1. Again, c > 1 ensures that vC1 (Bb) > vA1 (Bb) and thus
(vM (δF ), vM (δF )) ∈ Bb since vA1 (Bb(δ

F )) = vF1 = vM (δF ).

3.2. Classes II and IIIa

Classes II and IIIa include no conflict, stag hunt and coordination games.
The payoffs satisfy b < c < 1 and V ∗ is a quadrangle with an acute angle in
u(a) corner; see Fig. 5(a). In these games, δF is a maximum of Eqs. (21) and
(23). In Class II, the maximum is Eq. (21) and the point vFII is located at the
bottom edge between u(b) and u(d). In Class IIIa, the maximum is Eq. (23)
and vFIIIa is in the middle of V ∗. The boundary between the classes is given
when the two equations are equal, i.e.,

c = 1 + (b− 1)

√
b

b− 2
. (20)
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(a) Class II and IIIa (b) Class IV

Figure 5: Attainable payoffs in Classes II, IIIa and IV.

This means that δF is continuous on the boundary.
The point vFII and δFII are solved from the intersection of Bb and Bd:

vFII = vD(Bb(δ
F )) = vB(Bd(δ

F ))

⇒ (1− δF ) · 1 + δF v−2 (δ
F ) =

c− b

1− b
δF +

1− c

1− b
v−2 (δ

F )

⇒ δFII =
1− b− v−(δF ) + cv−(δF )

1− 2b+ c− v−(δF ) + bv−(δF )
, (21)

vFII =

(
0,

c− b+ (1− c)v−2 (δ
F ) + (c− 1)v−2 (δ

F )2

1 + c+ b(v−2 (δ
F )− 2)− v−2 (δ

F )

)
. (22)

On the second line, the payoff vD2 (Bb(δ
F )) is again solved from the incentive

compatiblity conditions. The term vB2 (Bd(δ
F )) can be solved from the equa-

tions: vB1 (Bd(δ
F )) = (1 − δF ) · 0 + δF y1 = v−1 (δ

F ), vB2 (Bd(δ
F )) = (1 − δF ) ·

0 + δF y2, where (y1, y2) is a payoff on the line between payoffs (b, c) and (a, a),
defined by z1 and z2: bz1 + z2 = c, az1 + z2 = a and y1z1 + z2 = y2.

First, let us show that vF /∈ Bδ
a(V

∗), a ∈ A, if δ < δF . This is exactly the
same as before: vF /∈ Bd(δ) or Bb(δ) when δ < δF and vF /∈ Ba(δ) or Bc(δ) by
proposition 3.

It is enough to check that Bd(δ
F ) covers [0, vM ]× [0, vM ], i.e., all the corner

points (0, 0), (0, vM (δF )) and (vM (δF ), vM (δF )). It will be shown with Class
IIIa that the other parts of V ∗ are covered if δ ≥ δFIIIa and in Class II it holds
that δFII > δFIIIa. Now, (0, v

M (δF )) ∈ Bd(δ
F ) by definition of δFII and since vM

coincides with v−2 (Bb(δ
F )) by Remark 1. By the shape of V ∗, vs(Bd) > vB2 (Bd)

since c < 1. Thus, (0, 0) and (vM (δF ), vM (δF )) belong to Bd(δ
F
II).
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In Class IIIa, it holds that δFIIIa > δFII . The point δFIIIa is located in the
middle of V ∗ at the intersection of Ba, Bb and Bd:

vF2,IIIa = v+2 (Bd ∩Bb) = v−2 (Ba ∩Bb)

⇒ δFIIIa =
3− 3b− 2c+ b(b+ c)

5− 4b+ b2 − 3c+ bc
, (23)

vFIIIa =

(
2− b− c

5− 3c+ b(b+ c− 4)
,

2 + b(b− 2)− c2

5− 3c+ b(b+ c− 4)

)
, (24)

see Fig. 5(a). First, we show again that vF /∈ Bδ
a(V

∗), a ∈ A, if δ < δF . vF /∈ Ba

by definition of vF . vF is not only located at the boundary of the intersection of
Bb and Bd but also on the boundary of the union of these sets. Thus, vF /∈ Bb or
Bd. Finally, v

F /∈ Bc(δ), δ < δF , since v−1 (Bc(δ)) > v−1 (Bc(δ
F )) = v−1 (Ba(δ

F )).
If v1 ≥ vF1 then v ∈ Ba(δ

F ). If v1 ≤ vF1 and v2 ≥ vM (δF ) then v belongs to
eitherBb orBd because the slope between vA(Bd) and vB(Bd) is greater than the
slope between vA(Bb) and vB(Bb). Finally, the region where 0 ≤ v2 ≤ vM (δF )
is examined with Class II and it is covered since δFIIIA > δFII in this class.

3.3. Class IIIb

In this class, the payoffs satisfy b + c > 2 and c > b. These are triangular
versions of prisoner’s dilemma, chicken and leader games. The set V ∗ is a
triangle since b + c > 2 and u(a) is inside the set V ∗. The point vF is located
in the middle of V ∗ and it is solved from the intersection of Bd, Bb and Bc:

vFIIIb = vs(Bd(δ
F )) =

(
vM (δF ), vM (δF )

)
⇒ (1− δF ) · 0 + δF

b+ c

2
= (1− δF )c+ δF v−(δF )

⇒ δFIIIb =
2c

b+ 3c− 2v−(V ∗)
, (25)

vFIIIb =

(
c(b+ c)

b+ 3c− 2v−(δF )
,

c(b+ c)

b+ 3c− 2v−(δF )

)
. (26)

First, we examine δ < δF . vF /∈ Ba since v−i (Ba(δ)) ≥ vM (δ) > vF (δF ), i =
1, 2. vF /∈ Bb since v−2 (Bb(δ)) ≥ vM (δ) > vM (δF ). vF /∈ Bc since v−1 (Bc(δ)) ≥
vM (δ) > vM (δF ). Finally, vF /∈ Bd by the definition of vF .

Let v = {v2 ≥ v1, v ∈ V ∗}. If v2 ≥ vM (δF ) then v ∈ Bb(δ
F ) by the geometry.

Similarly, if v2 ≤ vM (δF ) then v ∈ Bd(δ
F ).

3.4. Class IIIc

This class is the reversed version of Class IIIb so that b > c. These are battle
of the sexes, triangular versions of anti-prisoner’s dilemma and anti-chicken
games. The set V ∗ is triangular as in Class IIIb but the sets Bb and Bc are in
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reverse order. Again, the point vF is located in the middle of V ∗ and it is in
the intersection of sets Ba, Bb and Bc:

vFIIIc = vs(Ba(δ
F )) =

(
v−1 (Bb(δ

F )), v−2 (Bc(δ
F ))

)
⇒ (1− δF ) · 1 + δF

b+ c

2
= (1− δF )b+ δF v−(δF )

⇒ δFIIIc =
2b− 2

−2 + 3b− c
(27)

vFIIIc =

(
b2 + bc− 2v−(δF )

3b+ c− 2(1 + v−(δF ))
,

b2 + bc− 2v−(δF )

3b+ c− 2(1 + v−(δF ))

)
, (28)

see Fig. 4(b). Let δ < δF . vF /∈ Ba(δ) by the definition. vF /∈ Bb since
v−1 (Bb(δ)) > v−1 (Bb(δ

F )). vF /∈ Bc because v−2 (Bc(δ)) > v−2 (Bb(δ
F )). Finally,

vF /∈ Bd since vs(Bd(δ
F )) < vs(Ba(δ

F )) due to d < a.
Now, v2 ≥ v−2 (Bc(δ

F )) implies that v ∈ Bc(δ
F ). Also, v2 ≤ v−2 (Bc(δ

F ))
implies v ∈ Ba(δ

F ).

3.5. Class IIId

This class contains the quadrilateral versions of chicken such that b+ c > 2
and the u(a) corner is obtuse due to c > 1. These games are only slightly
different from Class I. Since b > d = 0, Bd needs a higher discount factor
to reach Ba than Bb does. The point vF is in the middle and solved as an
intersection of Ba and Bd:

vFIIId = vA(Bd(δ
F )) = vD(Ba(δ

F )) (29)

⇒ (1− δF ) · 0 + δF · 1 = (1− δF )c+ δF b

⇒ δFIIId =
c

1 + c− b
, (30)

vFIIId =

(
c

1 + c− b
,

c

1 + c− b

)
.

Let δ < δF . vF /∈ Ba or Bd by the definition of vF . vF /∈ Bb since
v−2 (Bb(δ)) = v−2 (Ba(δ)) > v−2 (Ba(δ

F )). Similarly, vF /∈ Bc since v−1 (Bb(δ)) =
v−1 (Ba(δ)) > v−1 (Ba(δ

F )).
Now, v1 ≥ vM (δF ) implies that v ∈ Ba(δ

F ). v2 ≤ vM (δF ) implies that
v ∈ Bd(δ

F ) due to the shape and c > 1 as in Class I. Next, we show that
v1 ≤ vM (δF ), v2 ≥ vM (δF ) belong to Bb(δ

F ). We examine all the corner points:
p1 = (b, vM (δF )), p2 = (vM (δF ), vM (δF )), p3 = vB(Ba(δ

F )) and p4 = u(b).
u(b) is a Nash equilibrium of the stage game and thus u(b) ∈ Bb(δ), ∀δ < 1.
By Remark 1, pk2 ≥ v−2 (Bb(δ

F )) = vM (δF ). Also, it holds that vC1 (Bb(δ
F )) >

vA1 (Bb(δ
F )) > vA(Bd(δ

F )) ≥ pk1 . Thus, p
k ∈ Bb(δ

F ) for all k.

3.6. Classes IV and V

Class IV contains the anti-coordination, anti-no conflict and anti-stag hunt
games. The payoff set is full only in the limit when δ → 1. By Proposition 3 the
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Table 2: The bounds of discount factor δF in correlated strategies.

Game Class 1 Class 2 Class 3

Prisoner’s dilemma II: δF = (c − 1)/c
Ib: δF = b/(b − 1)

Ia: δF = −b/c
Stag hunt

Ia: δF = (1 − c)/(1 − b)Coordination
No conflict

IIIa: δF = b
Chicken

IIIa: δF = 2b/(b + c)
II: δF = c−1

c−b

Leader
Anti-PD

V: δF = 0 Ia: δF = c−1
1−bAnti-chicken

Battle of the sexes IIIb: δF = (2 − 2c)/(2 − b − c)
Anti-coordination

IV: δF → 1Anti-no conflict
Anti-stag hunt

corner point vC(V ∗) can only be covered with Bc. However, this is not covered
with any δ < 1 because v−1 (Bc(δ)) = vM (δ) = (1− δ)a+ δv−(V ∗) > v−(V ∗).

Class V contains the trivial anti-games, where b > 1 and b + c < 2. In
these games a is both the minimax and Pareto-efficient payoff. Thus, the set
V ∗ = (1, 1) is a single point and the payoff set is always full, i.e., for all 0 ≤ δ < 1.

4. Equilibria in correlated pure strategies

The conditions for the bounds δF in correlated strategies are more simple.
Equation (12) means that V C is a convex combination of Ba, a ∈ A. In order
to show that V C(δ) = V ∗, we need to prove that the last corner point of
V ∗ is covered when δ = δF . Proposition 3 helps this task since any one of
Ba, a ∈ A, can cover only one corner. Note that the symmetry ensures that
vB(V ∗) ∈ V C ⇔ vC(V ∗) ∈ V C . The following subsections examine each corner
separately and δF is simply the maximum over each corner.

Table 2 gives the values of δF in the symmetric 2 × 2 supergames with
correlated pure strategies. There are five classes and they are based on the
last corner point to be filled: in Class I, the last corner is in the northwest,
corresponding to u(b) or u(c), the u(a) corner in Class II, and the u(d) corner
in Class III. Classes IV and V are exactly the same as in pure strategies; certain
anti-games are not filled for any δ < 1 and δF = 0 in Class V.

See the right parts of Figs. 2 and 3 for the classification and the values of
δF . We can see that the equations and the classes are different in pure and
correlated strategies. However, the locations of the high and low values of δF

are the same. The smallest value of δF = 0 is achieved in Class V, in point z1,
and in the limits when b → ∞ or c → ∞. The minimum value over coordination
games is achieved in point z3, where b = −1, c = 0 and δF = 1/2.

With public randomization, the values of δF are much lower. In pure strate-
gies, the scale is between 1/2 or 2/3 to 1, and between 0 and 1 with correlated
strategies. Thus, the smallest values are dropped to zero and this widens the
range of possible values. The borders of discontinuity are the same as before.
Now, it holds that δF = 0 on the whole c = b diagonal. Moreover, the same
result holds that δF → 1 in all classes and games, except in Class V and chicken
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Class II games. The maximum value within chicken Class II games is in point
z4, where b = 0, c = 2 and δF = 1/2; see Fig. 3.

4.1. Corner I

Let us examine the northwest corner of V ∗. The set that fills this corner
may only be Bb when c > b and Bc otherwise, by Proposition 3. There are three
conditions that are needed: the set Bb (or Bc) should reach south, east and west
enough to cover the corner. The first condition is that vM (δ) ≤ vB2 (V ∗) and
from this we can solve

δFIa =
v+2 (V

†)− v+2 (V
∗)

v+2 (V
†)− v−2 (δ)

. (31)

This is the maximum of the three values and thus a sufficient condition in the
triangular games which make up Class Ia.

In quadrilateral games, where c + b < 2, the second condition is v+1 (Bb) ≥
v−1 (δ), which gives

δFIb =
b− v−2 (δ)

b− 1
. (32)

This condition is the maximum in Class Ib games.
The third condition is that v−1 (Bb) = v−1 (δ). This is satisfied for all δ in

Class Ia and Ib games. In Class IV games, this condition does not hold for any
δ < 1, regardless of correlated strategies. These are the only games where the
column maximum that limits the set is different from the punishment of the
game.

4.2. Corner II

The corner vA(V ∗) exist only if the set V ∗ is quadrilateral, i.e., c + b < 2.
This point is filled up when vM (δ) ≤ a, from which we get

δFII =
v+2 (V

†)− 1

v+2 (V
†)− v−2 (δ)

. (33)

Note that this condition means that δFII = 0, i.e., a is a Nash equilibrium, if
c < 1.

4.3. Corner III

The corner vD(V ∗) is filled by the set Bd if b < c, and by Ba if b > c. In the
case where Ba fills the corner, the discount factor is solved from the equation
(1− δ)a+ δvS(V ∗) = v−2 , which gives

δFIIIa =
v−2 (δ)− a

vs(V ∗)− a
. (34)

In the Bd case, the bound is solved from (1− δ)d+ δvS(V ∗) = v−2 and we get

δFIIIb =
v−2 (δ)− d

vs(V ∗)− d
. (35)
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These equations simplify a bit in different games, since vs(V ∗) = a in quadri-
lateral games and vs(V ∗) = (b + c)/2 in triangular games. Note that δFIII = 0
if the punishment is a or d.

5. Equilibria in randomized strategies

The necessary and sufficient conditions for δF are more difficult to prove
in randomized strategies, since there are so many ways to get payoffs in mixed
strategies. The only chance is to go through systematically all the possible 2×2
stage games and check the payoffs that they produce (Berg and Schoenmakers,
2014). The following three examples demonstrate the variety of equilibria in
randomized strategies. The equilibria in Game 1 is the square from (1, 1) to
(3, 3). In Game 2, the set of equilibria consists of three lines: (1, 3) to (3/4, 3)
to (3/4, 1) to (3, 1). In Game 3, the equilibria consists of three points (2/3, 2/3),
(1, 2) and (2, 1). By Theorem 2, we need to go through the stage games where
each of the eight stage game payoffs can be selected from the attainable payoffs
Ba, a ∈ A, for each action profile.

Game 1
3, 3 1, 3
3, 1 1, 1

Game 2
1, 3 0, 3
0, 1 3, 1

Game 3
2, 1 0, 0
0, 0 1, 2

Table 3 and Figure 6 give the results for the randomized strategies. The
classes are based on which condition determines the value for δF . In Class Ia,
the last point to be filled is on the boundary between u(b) and u(a), i.e., the
intersection of Ba and Bb. Class Ib corresponds to the triangle games, where
Bb and Bc intersect. In Class II, a corner point determines the value of δF :
u(b) corner is last to be covered in Class IIa and u(d) corner in Class IIb. The
intersection of Bd and Bb determines the value for Class III. The Classes IV
and V are the same as before. Note that the values in Classes IIb and III may
only be upper bounds, i.e., the conditions are sufficient and the values of δF

may be a little bit lower if certain regions of payoffs can be obtained with more
complicated mixed strategies than examined here.

It should also be noted that δF = 1 in all leader, battle of the sexes, coor-
dination and anti-coordination games. For comparison, the values in Table 3
and Figure 6 correspond to the discount factor values when the pure-strategy
reasonable payoffs are obtained. In leader and battle of the sexes games, it
is impossible to obtain the payoff on the punishment line between u(d) and
u(b), and between u(a) and u(b) in coordination and anti-coordination games.
This is simply because these payoffs can only be obtained by playing the pure
strategies and the minimum payoff in pure strategies is strictly higher than the
mixed-strategy punishment payoff. For this reason, we could define the reason-
able payoffs to be strictly higher than the minimax payoffs, but this would not
help since obtaining a payoff close to the (mixed-strategy) minimax payoff in
the corner requires a discount factor close to one. Thus, one of the problems in
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Table 3: The bounds of discount factor δF in randomized strategies.

Game Class 1 Class 2 Class 3

Prisoner’s dilemma Ib: δF = (c − b)/2c Ia: δF = (c − b)/(1 + c − b)

Chicken
III∗: δF = (b + c)/2c

Ia: δF = (c − b)/(1 + c − 2b) III∗: δF = 1
2−b

Leader∗∗

Battle of the sexes∗∗ III∗: δF = b+c−2
2(b−1)

Stag hunt
IIa: δF = (1 − c)/(1 − b)

Ia: δF = (b − 1)/(b − 2)
Coordination∗∗

No conflict Ia: δF = 1/2 IIb∗: δF = b
Anti-no conflict

IV: δF = 1Anti-coordination∗∗

Anti-stag hunt
Anti-chicken

V: δF = 0 Ib: δF = (b − c)/2(b − 1)
Anti-PD
∗ possibly only an upper bound.
∗∗ δF = 1, the values correspond to obtaining reasonable payoffs in pure strategies.
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Figure 6: Classification and bounds in randomized strategies.
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obtaining all the reasonable payoffs in randomized strategies is the fact that the
punishment payoffs may be strictly lower in mixed strategies.

We can see from the results that the differences between pure and randomized
strategies are very small. In some games, the values of δF are exactly the same
when the last payoff to be filled is obtained in pure strategies. When the last
payoff is in the middle, then it is possible to fill these payoffs sooner in mixed
strategies. The difference in the value of δF is typically smaller than 0.05 in
quadrilateral games and smaller than 0.15 in triangle games.

5.1. Class I

In Class Ia, the necessary and sufficient condition for δF is that Ba and
Bb intersect. In prisoner’s dilemma, this is obvious since the last point to be
filled in pure strategies is on the boundary and this payoff cannot be obtained
in non-pure mixed strategies; thus, the condition in PD is the same as in pure
strategies. The same argument for the necessity of the condition also holds for
the other games in Class Ia. However, we need to prove the sufficiency for the
other games.

In quadrilateral chicken, a sufficient condition is that 1) Ba and Bb intersect
and 2) Bd and Bb intersect. It is possible to fill the payoffs in the middle that
do not belong to the (pure-strategy) attainable sets Ba, a ∈ A, with mixed
strategies. For example, we can construct a stage game with payoffs (u+

1 , z1) ∈
Ba, (u

−
1 , z2) ∈ Bb, (u

+
1 , u2) ∈ Bc and (u−

1 , u2) ∈ Bd, where u+
1 > u−

1 and z1
and z2 do not matter as long as the payoffs are in Ba and Bb. Now, there is a
Nash equilibrium where the first player plays bottom and the second player can
use any randomization. Thus, they can obtain any payoff on the line between
(u−

1 , u2) and (u+
1 , u2). By going through the sets Bc and Bd, these lines cover

all the payoffs in the middle that are left between the sets Ba, a ∈ A. Note that
this is only a sufficient condition, and it is possible that all these payoffs can be
obtained with lower discount factors with some other mixed strategies.

u+
1 , z1 u−

1 , z2
u+
1 , u2 u−

1 , u2

In stag hunt and coordination games, the necessary and sufficient condition
is that 1) Ba and Bd intersect and 2) vB(V ∗) is covered with Bb. The reason is
the fact that the line between u(a) and u(b) can only be obtained by playing pure
strategies a and b. In Class Ia, condition 1) implies 2) which makes condition
1) a necessary and sufficient condition. In Class IIa, condition 2) implies 1),
which makes condition 2) a necessary and sufficient condition. In other words,
the condition is the maximum over 1) and 2) in all these games. The gaps
between the pure-strategy attainable payoffs Ba, a ∈ A, can be filled with
similar strategies as explained above.

In no conflict games, there is an additional condition 3) Bd should be non-
empty. The value of δF is a maximum over the three conditions, and these
give the three regions Ia (Ba and Bb), IIa (b corner covered) and IIb (d corner
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covered). Again, the gaps between the attainable payoffs Ba, a ∈ A, are filled
with suitable mixed strategies.

In triangle PD, anti-PD and anti-chicken, the necessary and sufficient con-
dition is that Bb and Bc intersect. This condition implies that Bd and Bb has
intersected. Thus, it is possible to fill the gaps between the sets Ba, a ∈ A with
suitable mixed strategies as explained before. The condition is necessary since
the payoffs between u(b) and u(c) can only be obtained by playing the pure
strategies b and c.

5.2. Class II

In Class IIb, a necessary and sufficient condition is that the payoffs near
vD(V ∗) are covered. A sufficient condition for this is that Bd is non-empty.
This is satisfied when it is possible to play d: (1− δ) · 0 + δ · 1 = (1− δ)b+ δb
and thus δF = b for Class IIb. We are not sure if this condition is necessary as
all the payoffs near vD(V ∗) may be obtained with some mixed strategies with
lower discount factor value.

In Class IIa, a necessary and sufficient condition is that vB(V ∗) is covered
with Bb. This implies that the sets Ba and Bd have intersected, as explained
before. Note that the conditions are the same as in correlated strategies of Class
Ia.

5.3. Class III

A sufficient condition for this class is that Bd and Bb intersect. This guar-
antees that the gaps between the pure-strategy attainable sets Ba, a ∈ A, are
covered with suitable mixed strategies. We can solve the value δF for triangle
chicken and leader games in the following way. We first solve the value of δ when
it is possible to play d: (1− δ) · 0 + δ(b+ c)/2 = (1− δ)b+ δb, from which we
get δ1 = 2b/(b + c). Now, vB(Bd(V

∗)) moves linearly from vD(V ∗) to vB(V ∗)
when δ goes from the above value to 1: z1δ1 + z2 = b and z1 · 1 + z2 = c, from
which we get z1 = b + c and z1 = −b. Finally, we can solve the value when it
intersects vD(Bb): z1δ

F + z2 = (1 − δF )c + δF b and we have δF = (b + c)/2c.
Again, we are not sure if this condition is necessary but it provides an upper
bound for δF .

6. Conclusions

This paper examines the discount factor values when the subgame-perfect
equilibrium payoffs cover all the relevant payoffs in the symmetric 2 × 2 su-
pergames. The main motivation is to study if the folk theorem could be ex-
tended in a class of games and find out the reasons why a high level of patience
such as δ → 1 is required in some games. We find that the main reason is that
it is impossible to obtain payoffs close to the minimax values: 1) this happens in
Class IV in all strategies, 2) it is a result of the fact that the mixed-strategy pun-
ishment payoff is strictly smaller than the pure-strategy punishment in leader,
battle of the sexes, coordination and its anti-game in randomized strategies,

24



and 3) it is due to geometrical reasons in some games, i.e., how the stage game
payoffs are located and how large the reasonable payoffs V ∗ is in proportion to
feasible payoffs V †. If V ∗ is small, which also means that it is difficult to play
certain actions in the game, then a high level of patience is required. On the
other hand, if V ∗ is large and square-shaped then the payoff set is filled already
with a small discount factor value.

We also examine how the randomized and correlated strategies affect the
results. The games are organized into a few classes based on the equation
that determines the smallest discount factor value as a function of the stage
game payoffs. The classes and the equations are a bit different under different
strategies, but the overview looks similar. Even though a lower level of patience
is required with public randomization, the highest and the lowest values are
obtained in the same regions: 1) the payoff set is a single point for all discount
factors in the obtuse-angle quadrilateral anti-games, 2) the lowest value for two
dimensional payoff sets is in the square-shaped games in point z1, 3) the limit
δ → 1 is achieved when b → −∞, when c ≈ b, when b ≥ 1 and b + c ≈ 2, or
in certain anti-games. Thus, it is not possible to extend the folk theorem in
any of the typical game classes, such as prisoner’s dilemma, chicken and stag
hunt games, unless certain extreme payoffs can be ruled out. Furthermore, the
randomized nor correlated strategies do not provide a remedy in these games
and it holds that δF → 1 under all strategies.

The results of this paper help in determining the payoff set for high discount
factor values. If the discount factor is higher than the value δF , then all the
reasonable payoffs are subgame-perfect equilibrium payoffs. This is a good result
since these discount factor values are challenging for the computational methods
since then the set of equilibria is huge. Moreover, it is a bit surprise how small
δF can be with correlated strategies. It was also observed that there are certain
boundaries where δF is discontinuous, which means that small changes in the
payoffs may affect dramatically the equilibrium payoffs. Finally, it should be
noted that this kind of analysis could be extended to asymmetric games with
more than two actions and more than two players.
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