◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Cracking the Code of Repeated Games

Kimmo Berg and Mitri Kitti Aalto University

February 7, 2011

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- Setup: infinitely repeated game with discounting
 - perfect monitoring
 - pure strategies
 - stage game with finitely many actions

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- Setup: infinitely repeated game with discounting
 - perfect monitoring
 - pure strategies
 - stage game with finitely many actions
- Research questions:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

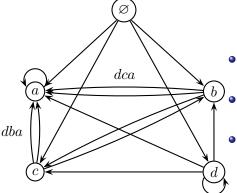
- Setup: infinitely repeated game with discounting
 - perfect monitoring
 - pure strategies
 - stage game with finitely many actions
- Research questions:
 - What are the subgame perfect equilibrium (SPE) paths?
 - What about the payoff set?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Setup: infinitely repeated game with discounting
 - perfect monitoring
 - pure strategies
 - stage game with finitely many actions
- Research questions:
 - What are the subgame perfect equilibrium (SPE) paths?
 - What about the payoff set?
 - What if the stage game and the discount factors change?

- Setup: infinitely repeated game with discounting
 - perfect monitoring
 - pure strategies
 - stage game with finitely many actions
- Research questions:
 - What are the subgame perfect equilibrium (SPE) paths?
 - What about the payoff set?
 - What if the stage game and the discount factors change?
 - Can we measure the complexity of equilibria?
 - What affects the complexity?

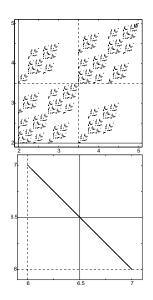
Main results: methods to compute and analyze equilibria



- Complex equilibrium behavior collapses into elementary subpaths
 - SPE paths can be represented with directed multigraph

• Analyze complexity of SPE paths

Main results: classification of 2x2 supergames



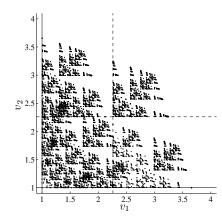
- 12 symmetric ordinal 2x2 games can be classified into 3 groups
- Stag Hunt is more "interesting" than Battle of the Sexes
- SPE paths in BoS: repetition of stage game's NE $(b^{\mathbf{N}}c^{\mathbf{N}})^{\infty}$

 Stag Hunt: suitable combinations of all actions a,b,c,d

Analysis of equilibria

2x2 games

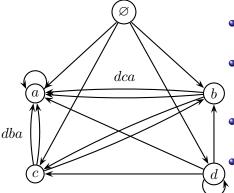
Main Results: Measuring Complexity



- Payoff set is a graph-directed self-affine set
- Estimate its Hausdorff dimension
- We can also analyze the paths: their dimension, cardinality and entropy

(日)

Main results: what affects the complexity?



- Properties of the multigraph: the cycles and the contractions
- Change in discount factors create continuous change in path dimension
- Change in cycles create discontinuous change
- Related to the eigenvalues of the adjacency matrix

Analysis of equilibria

2x2 games

▲日▼▲□▼▲□▼▲□▼ □ ののの

Characterization of equilibria

- Path d^{∞} is SPE but there are others
- SPE strategies consists of SPE and punishment paths
- There are no one-shot deviations from SPE paths
- Here, path d^{∞} is the punishment path

The building block of SPE paths

- A path is first-action feasible (FAF) if the first action is incentive compatible when any SPE path follows the path
- *bdca* is FAF if there are no profitable one-shot deviations from *b* and the path continues incentive compatible

The building block of SPE paths

- A path is first-action feasible (FAF) if the first action is incentive compatible when any SPE path follows the path
- *bdca* is FAF if there are no profitable one-shot deviations from *b* and the path continues incentive compatible
- For example, FAF paths are a, ba, and bbaa
- Is a path $p = (abba)^{\infty}$ a SPE path?

The building block of SPE paths

- A path is first-action feasible (FAF) if the first action is incentive compatible when any SPE path follows the path
- *bdca* is FAF if there are no profitable one-shot deviations from *b* and the path continues incentive compatible
- For example, FAF paths are *a*, *ba*, and *bbaa*
- Is a path $p = (abba)^{\infty}$ a SPE path?

 $a b b a a \ldots$

 $\bullet \ a$ is a FAF path

The building block of SPE paths

- A path is first-action feasible (FAF) if the first action is incentive compatible when any SPE path follows the path
- *bdca* is FAF if there are no profitable one-shot deviations from *b* and the path continues incentive compatible
- For example, FAF paths are a, ba, and bbaa
- Is a path $p = (abba)^{\infty}$ a SPE path?

 $a b b a a \dots$

bbaa is a FAF path

The building block of SPE paths

- A path is first-action feasible (FAF) if the first action is incentive compatible when any SPE path follows the path
- *bdca* is FAF if there are no profitable one-shot deviations from *b* and the path continues incentive compatible
- For example, FAF paths are a, ba, and bbaa
- Is a path $p = (abba)^{\infty}$ a SPE path?

 $a b b a a \ldots$

ba is a FAF path

The building block of SPE paths

- A path is first-action feasible (FAF) if the first action is incentive compatible when any SPE path follows the path
- *bdca* is FAF if there are no profitable one-shot deviations from *b* and the path continues incentive compatible
- For example, FAF paths are a, ba, and bbaa
- Is a path $p = (abba)^{\infty}$ a SPE path?

 $a b b a a \ldots$

 $\bullet \ a$ is a FAF path

The building block of SPE paths

- A path is first-action feasible (FAF) if the first action is incentive compatible when any SPE path follows the path
- *bdca* is FAF if there are no profitable one-shot deviations from *b* and the path continues incentive compatible
- For example, FAF paths are *a*, *ba*, and *bbaa*
- Is a path $p = (abba)^{\infty}$ a SPE path?

 $a b b a a \ldots$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Thus, ABBA can be played infinitely

• FAF paths: d, aa, ba, bc, ca, cb, bdca, cdba

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• What are the SPE paths?

• FAF paths: d, aa, ba, bc, ca, cb, bdca, cdba

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- What are the SPE paths?
- bc

• FAF paths: d, aa, ba, bc, ca, cb, bdca, cdba

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- What are the SPE paths?
- b**c**b

• FAF paths: d, aa, ba, bc, ca, cb, bdca, cdba

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- What are the SPE paths?
- *bc***b***c*

• FAF paths: d, aa, ba, bc, ca, cb, bdca, cdba

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- What are the SPE paths?
- $bcbcb = (bc)^{\infty}$

• FAF paths: d, aa, ba, bc, ca, cb, bdca, cdba

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

• What are the SPE paths?

•
$$bcbcb = (bc)^{\infty}$$

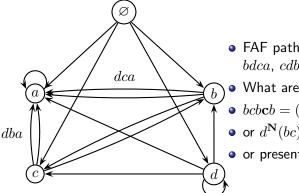
• or
$$d^{\mathbf{N}}(bc)^{\mathbf{N}}a^{\infty}$$

- FAF paths: d, aa, ba, bc, ca, cb, bdca, cdba
- What are the SPE paths?
- $bcbcb = (bc)^{\infty}$
- or $d^{\mathbf{N}}(bc)^{\mathbf{N}}a^{\infty}$
- or present all with multigraph

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Analysis of equilibria

Construction of equilibria



- FAF paths: d, aa, ba, bc, ca, cb, bdca, cdba
- What are the SPE paths?

•
$$bcb\mathbf{c}b = (bc)^{\infty}$$

• or
$$d^{\mathbf{N}}(bc)^{\mathbf{N}}a^{\infty}$$

• or present all with multigraph

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Analysis with the multigraph

• Examine complexity of SPE paths

- cycles in multigraph related to dimension
- number and length of elementary subpaths
- entropy of action profiles

Analysis with the multigraph

- Examine complexity of SPE paths
 - cycles in multigraph related to dimension
 - number and length of elementary subpaths
 - entropy of action profiles
- Examine complexity of payoff set
 - where are the SPE payoffs and how dense are they?

Analysis with the multigraph

- Examine complexity of SPE paths
 - cycles in multigraph related to dimension
 - number and length of elementary subpaths
 - entropy of action profiles
- Examine complexity of payoff set
 - where are the SPE payoffs and how dense are they?
 - Hausdorff dimension of the payoff set
 - graph directed construction: Mauldin and Williams (1988)
 - arcs correspond to contractions
 - if p=abc is played on an arc, then contraction mapping on the arc is $r_p=\delta^{|p|}=\delta^3$

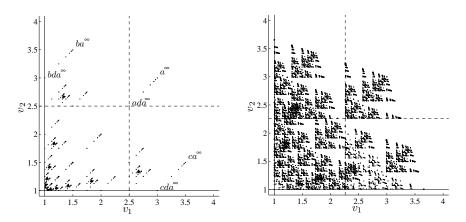
Analysis with the multigraph

- Examine complexity of SPE paths
 - cycles in multigraph related to dimension
 - number and length of elementary subpaths
 - entropy of action profiles
- Examine complexity of payoff set
 - where are the SPE payoffs and how dense are they?
 - Hausdorff dimension of the payoff set
 - graph directed construction: Mauldin and Williams (1988)
 - arcs correspond to contractions
 - if p=abc is played on an arc, then contraction mapping on the arc is $r_p=\delta^{|p|}=\delta^3$
 - exact dimension when open set condition is satisfied ($\delta < 0.5$)
 - otherwise, lower and upper bound estimates: Edgar and Golds (1999)

Effects of discounting: SPE paths increase

$$\delta = 0.5$$
, dim_H = 0 (limit)

 $\delta = 0.58$, dim $_H \approx 1.4$

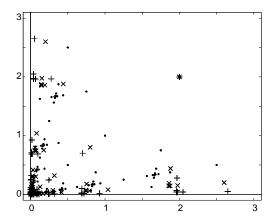


◆ロ ▶ ◆屈 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

(日)

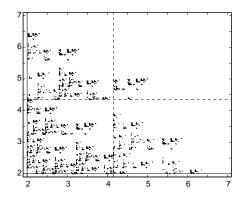
э

Effects of discounting: payoff set not monotone



- PD with $\delta = 0.35$ (+), $\delta = 0.4$ (x), $\delta = 0.5$ (·)
- maximum payoff around 2.5 decreases, path ca^{∞}
- Mailath, Obara and Sekiguchi (2002)

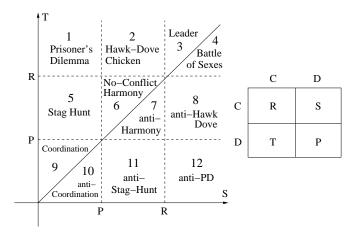
Unequal discount factors



• PD with $\delta_1 = 0.57$ and $\delta_2 = 0.53$

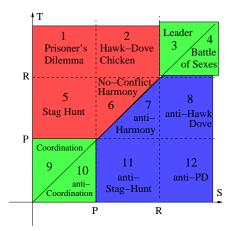
- payoff set tilted to one side, more sparse on southern side
- some actions to player 2 are not possible as he is less patient
- Lehrer and Pauzner (1999)

Twelve symmetric strictly ordinal 2x2 games



Robinson and Goforth (2005)

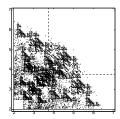
Classification into three groups

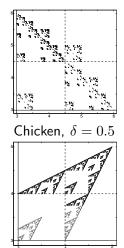


red: high complexity, green: low complexity, blue: only one SPE

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Payoff sets with high complexity

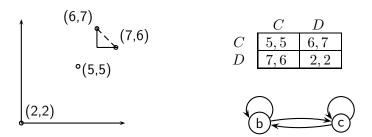




No Conflict, $\delta=0.5$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Payoff sets with low complexity



- Payoff sets similar in Leader, Battle of the Sexes, Coordination and anti-Coordination games
- repetition of two equilibria
- dim_H = 1 when δ from 1/2 to $0.6 \dots 0.8$
- when $\delta < 1/2$, isolated points between b and c

Path dimensions

game/ δ	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1	0	0	0.69	1.23*	3.37*	5.91*	12.88*
2	0.58	0.81	1.24	2.03*	3.33*	5.80*	12.75^{*}
5	0.73	1.10	1.49	2.26*	3.46*	5.85*	12.76*
6	0	0	1.39	2.12*	3.33*	5.71*	12.44*
Sierpinski	0.91	1.20	1.59	2.15	3.08	4.92	10.43
Upper bound	1.15	1.51	2	2.71	3.89	6.21	13.16
3	0.58	0.76	1	1.36	1.94	3.11	5.52*
4	0.58	0.76	1	1.36	2.12**	3.83**	6.40*
9	0.58	0.76	1	1.46**	2.51**	4.47*	10.57*
10	0.58	0.76	1	1.36	2.25**	4.09*	10.07*

FAF path length restricted to 8 (*) and 12 (**)

Summary

- New methods to compute and analyze equilibria
- SPE paths are characterized by finite subpaths
- Useful multigraph presentation
- Hausdorff dimensions for paths and payoffs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

- New methods to compute and analyze equilibria
- SPE paths are characterized by finite subpaths
- Useful multigraph presentation
- Hausdorff dimensions for paths and payoffs
- Classification of 2x2 games
- Equilibria for wide range of discount factors

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Any questions?