Equilibrium Paths in Discounted Supergames

Kimmo Berg and Mitri Kitti Aalto University

July 13, 2010

- Setup: infinitely repeated game with discounting
 - perfect monitoring
 - pure strategies
 - stage game with finitely many actions

- Setup: infinitely repeated game with discounting
 - perfect monitoring
 - pure strategies
 - stage game with finitely many actions
- Research questions:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

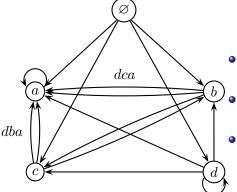
- Setup: infinitely repeated game with discounting
 - perfect monitoring
 - pure strategies
 - stage game with finitely many actions
- Research questions:
 - What are the subgame perfect equilibrium (SPE) paths?
 - What about the payoff set?

▲日▼▲□▼▲□▼▲□▼ □ のので

- Setup: infinitely repeated game with discounting
 - perfect monitoring
 - pure strategies
 - stage game with finitely many actions
- Research questions:
 - What are the subgame perfect equilibrium (SPE) paths?
 - What about the payoff set?
 - What happens when the discount factors change?

Applications

Main Results: Analyze and Compute SPE Paths



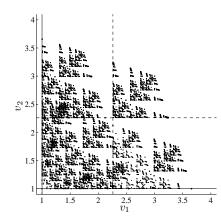
- Complex equilibrium behavior collapses into elementary subpaths
 - SPE paths can be represented with directed multigraph

• Analyze complexity of SPE paths

Analysis of equilibria

Applications

Main Results: Analyze and Compute Payoff Set



- Payoff set is a particular fractal
- Graph directed self-affine set
- Estimate Hausdorff dimension

< ロ > < 同 > < 回 > < 回 >

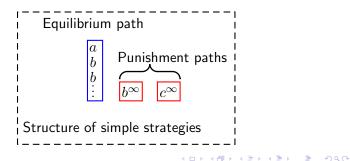
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Characterization of SPE strategies

• All SPE paths are attained by simple strategies: Abreu (1988)

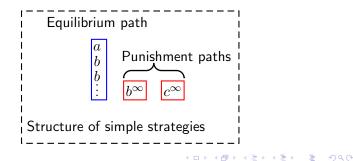
Characterization of SPE strategies

• All SPE paths are attained by simple strategies: Abreu (1988)



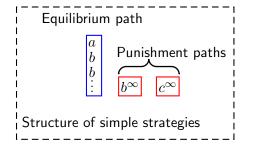
Characterization of SPE strategies

- All SPE paths are attained by simple strategies: Abreu (1988)
 - Equilibrium path that the players follow
 - History-independent punishment paths for each player



Characterization of SPE strategies

- All SPE paths are attained by simple strategies: Abreu (1988)
 - Equilibrium path that the players follow
 - History-independent punishment paths for each player
 - Punishment paths are played if the players deviate from the current path
 - These are equilibrium paths that give the minimum payoffs $v_i^- = \min\{v_i : v \in V^*\}.$



Characterization of SPE paths

• SPE paths are characterized by one-shot deviation principle

▲日▼▲□▼▲□▼▲□▼ □ のので

Characterization of SPE paths

- SPE paths are characterized by one-shot deviation principle
- A path p that strategy σ induces is a SPE path if and only if it satisfies the incentive compatibility (IC) constraints:

Characterization of SPE paths

- SPE paths are characterized by one-shot deviation principle
- A path p that strategy σ induces is a SPE path if and only if it satisfies the incentive compatibility (IC) constraints:

$$(1-\delta_i)u_i(a^k(\sigma)) + \delta_i v_i^k \ge \max_{a_i \in A_i} \left[(1-\delta_i)u_i(a_i, a_{-i}^k(\sigma)) + \delta_i v_i^- \right],$$

 $\begin{array}{l} \forall i \in N, \ k \geq 0, \ \text{and where the continuation payoff after } a^k(\sigma) \\ \text{is } v^k_i = (1-\delta_i) \sum_{j=0}^\infty \delta^j_i u_i(a^{k+1+j}(\sigma)). \end{array} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

New Concept

Definition

A finite path $p \in A^k(a)$ is a first action feasible (FAF) path if the first action profile a is incentive compatible when any SPE path follows the finite path:

▲日▼▲□▼▲□▼▲□▼ □ のので

New Concept

Definition

A finite path $p \in A^k(a)$ is a first action feasible (FAF) path if the first action profile a is incentive compatible when any SPE path follows the finite path:

$$(1-\delta_i)\sum_{k=0}^{|p|-1} u_i(i(p_k)) + \delta_i^{|p|} v_i^- \ge \max_{a_i \in A_i} (1-\delta_i) u(a_i, a_{-i}) + \delta_i v_i^-,$$

 $\forall i \in N.$

Illustrative Example

- We can check that a path is IC with the FAF paths
- FAF paths are *a*, *ba*, and *bbaa*
- Is a path $p = (abba)^{\infty}$ a SPE path?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Illustrative Example

- We can check that a path is IC with the FAF paths
- FAF paths are *a*, *ba*, and *bbaa*
- Is a path $p = (abba)^{\infty}$ a SPE path?

 $a b b a a \cdots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Illustrative Example

- We can check that a path is IC with the FAF paths
- FAF paths are *a*, *ba*, and *bbaa*
- Is a path $p = (abba)^{\infty}$ a SPE path?

 $a b b a a \cdots$

• a is a FAF path

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Illustrative Example

- We can check that a path is IC with the FAF paths
- FAF paths are *a*, *ba*, and *bbaa*
- Is a path $p = (abba)^{\infty}$ a SPE path?

 $a b b a a \cdots$

bbaa is a FAF path

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Illustrative Example

- We can check that a path is IC with the FAF paths
- FAF paths are *a*, *ba*, and *bbaa*
- Is a path $p = (abba)^{\infty}$ a SPE path?

 $a b b a a \cdots$

• *ba* is a FAF path

Illustrative Example

- We can check that a path is IC with the FAF paths
- FAF paths are a, ba, and bbaa

• Is a path
$$p = (abba)^{\infty}$$
 a SPE path?

 $a b b a a \cdots$

 $\bullet \ a$ is a FAF path

Illustrative Example

- We can check that a path is IC with the FAF paths
- FAF paths are a, ba, and bbaa

• Is a path
$$p = (abba)^{\infty}$$
 a SPE path?

 $a b b a a \cdots$

• Thus, $p = (abba)^{\infty}$ is a SPE path

▲日▼▲□▼▲□▼▲□▼ □ のので

Recursive Definition of FAF Paths

Definition

A vector con(a) gives the least payoffs that make action a IC $(1 - \delta_i)u_i(a) + \delta_i \operatorname{con}_i(a) = \max_{a_i \in A_i} \left[(1 - \delta_i)u_i(a_i, a_{-i}) + \delta_i v_i^- \right],$ $\forall i \in N.$

▲日▼▲□▼▲□▼▲□▼ □ のので

Recursive Definition of FAF Paths

Definition

A vector con(a) gives the least payoffs that make action a IC $(1 - \delta_i)u_i(a) + \delta_i \operatorname{con}_i(a) = \max_{a_i \in A_i} \left[(1 - \delta_i)u_i(a_i, a_{-i}) + \delta_i v_i^- \right],$ $\forall i \in N.$

Definition

For any
$$p \in A^k(a)$$
, $k \ge 2$, and $p = p^{k-1}a$,
 $con_i(p) = \delta_i^{-1} [con_i(p^{k-1}) - (1 - \delta_i)u(a)]$.

Recursive Definition of FAF Paths

Definition

A vector con(a) gives the least payoffs that make action a IC $(1 - \delta_i)u_i(a) + \delta_i \operatorname{con}_i(a) = \max_{a_i \in A_i} \left[(1 - \delta_i)u_i(a_i, a_{-i}) + \delta_i v_i^- \right],$ $\forall i \in N.$

Definition

For any
$$p \in A^k(a)$$
, $k \ge 2$, and $p = p^{k-1}a$,
 $con_i(p) = \delta_i^{-1} [con_i(p^{k-1}) - (1 - \delta_i)u(a)].$

Definition

A finite path $p \in A^k(a)$, $k \ge 2$, is a FAF path if and only if $con(p) \le con(a)$.

▲日▼▲□▼▲□▼▲□▼ □ のので

New Concept

Definition

A finite path $p \in A^k(a)$ is a first action infeasible (FAI) path if the first action profile a is not incentive compatible no matter what SPE path follows:

▲日▼▲□▼▲□▼▲□▼ □ ののの

New Concept

Definition

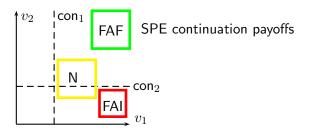
A finite path $p \in A^k(a)$ is a first action infeasible (FAI) path if the first action profile a is not incentive compatible no matter what SPE path follows:

 $\operatorname{con}_i(p) > \overline{v}_i$, for some $i \in N$,

where $\bar{v}_i = \max\{v_i : v \in V^*\}, i \in N$.

Interpretation of FAF and FAI paths

- We can classify all finite paths by using con(a)
- Future payoffs weigh less due to discounting



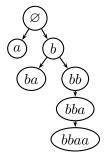
▲日▼▲□▼▲□▼▲□▼ □ ののの

Analysis of equilibria

Applications

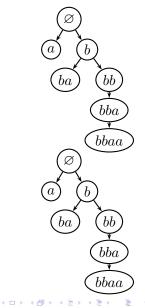
Construction of SPE paths

 $1. \ \mbox{Compute FAF}$ paths and represent as tree

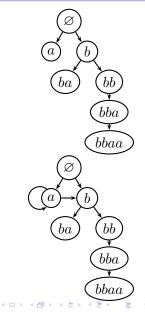


◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

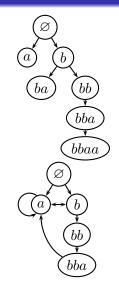
- 1. Compute FAF paths and represent as tree
- 2. Form graph: Nodes are from the tree
- 3. Form arcs:
 - inner nodes: arcs from the tree



- 1. Compute FAF paths and represent as tree
- 2. Form graph: Nodes are from the tree
- 3. Form arcs:
 - inner nodes: arcs from the tree
 - leaf nodes connected to root: arcs to root node's children

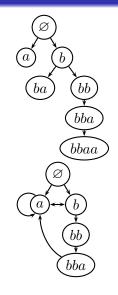


- 1. Compute FAF paths and represent as tree
- 2. Form graph: Nodes are from the tree
- 3. Form arcs:
 - inner nodes: arcs from the tree
 - leaf nodes connected to root: arcs to root node's children
 - other leaf nodes: find p_k in the tree.
 - If p_k found in tree, arc from p_1 to p_k .
 - If longest common path with p an inner node in tree, p is infeasible.
 - Else set k = k + 1.



(日) (部) (E) (E) (E)

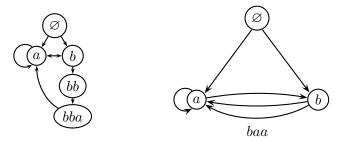
- 1. Compute FAF paths and represent as tree
- 2. Form graph: Nodes are from the tree
- 3. Form arcs:
 - inner nodes: arcs from the tree
 - leaf nodes connected to root: arcs to root node's children
 - other leaf nodes: find p_k in the tree.
 - If p_k found in tree, arc from p_1 to p_k .
 - If longest common path with p an inner node in tree, p is infeasible.
 - Else set k = k + 1.
- Note that FAF paths may have infeasible parts.



▲日▼▲□▼▲□▼▲□▼ □ ののの

Multigraph Representation

- When FAF paths with infeasible parts are removed, we get the elementary subpaths of the game
- Graph can be simplified by removing the states with only one destination



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Analysis with the Multigraph

• Examine complexity of SPE paths

- cycles in multigraph related to dimension
- number and length of elementary subpaths
- entropy of action profiles

Analysis with the Multigraph

- Examine complexity of SPE paths
 - cycles in multigraph related to dimension
 - number and length of elementary subpaths
 - entropy of action profiles
- Examine complexity of payoff set
 - where are the SPE payoffs and how dense are they?

Analysis with the Multigraph

- Examine complexity of SPE paths
 - cycles in multigraph related to dimension
 - number and length of elementary subpaths
 - entropy of action profiles
- Examine complexity of payoff set
 - where are the SPE payoffs and how dense are they?
 - Hausdorff dimension of the payoff set
 - graph directed construction: Mauldin and Williams (1988)
 - arcs correspond to contractions
 - if p=abc is played on an arc, then contraction mapping on the arc is $r_p=\delta^{|p|}=\delta^3$

Analysis with the Multigraph

- Examine complexity of SPE paths
 - cycles in multigraph related to dimension
 - number and length of elementary subpaths
 - entropy of action profiles
- Examine complexity of payoff set
 - where are the SPE payoffs and how dense are they?
 - Hausdorff dimension of the payoff set
 - graph directed construction: Mauldin and Williams (1988)
 - arcs correspond to contractions
 - if p=abc is played on an arc, then contraction mapping on the arc is $r_p=\delta^{|p|}=\delta^3$
 - exact dimension when open set condition is satisfied ($\delta < 0.5$)
 - otherwise, lower and upper bound estimates: Edgar and Golds (1999)

Analysis of equilibria

Applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Example of Prisoners' Dilemma

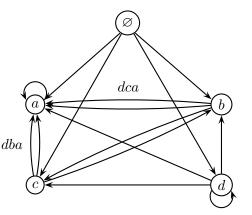
• Stage game:
$$T = \begin{matrix} L & R \\ 3,3 & 0,4 \\ B & 4,0 & 1,1 \end{matrix}$$

• $A = \{a, b, c, d\}$ from left to right, top to bottom

• For $\delta_1 = \delta_2 = 1/2$ the finite elementary sets

	a	b	c	d
P^1	Ø	Ø	Ø	$\{d\}$
P^2	${aa}$	$\{ba, bc\}$	$\{ca, cb\}$	Ø
P^4	Ø	$\{bdca\}$	$\{cdba\}$	Ø

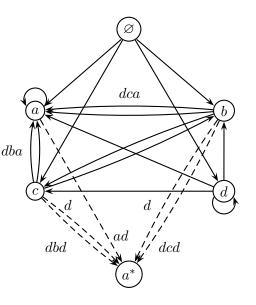
Multigraph of Prisoners' Dilemma



- Finite elementary subpaths
- Note: arc labels contain the information for creating SPEPs
 - no label = same as the node pointed at

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Multigraph of Prisoners' Dilemma



- Finite elementary subpaths
- Note: arc labels contain the information for creating SPEPs
 - no label = same as the node pointed at
- Infinite elementary subpaths $P^{\infty}(a) = \{ada^{\infty}\},\$ $P^{\infty}(b) = \{bda^{\infty}, bdcda^{\infty}\},\$ $P^{\infty}(b) = \{cda^{\infty}, cdbda^{\infty}\}$

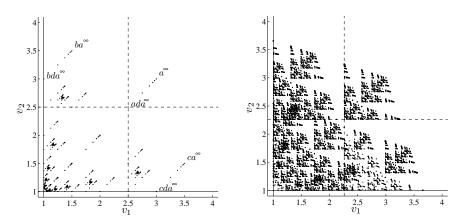
▲日▼▲□▼▲□▼▲□▼ □ ののの

Analysis of equilibria

Payoffs in Prisoner's Dilemma

$$\delta = 0.5$$
, dim_H = 0 (limit)

 $\delta = 0.58$, dim $_H \approx 1.4$



◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Results

Proposition

A path $p \in A^{\infty}(a)$ is a SPEP if and only if for all $j \in \mathbb{N}$ either $p_j^k \in P^k(i(p_j^k))$ for some k or $p_j \in P^{\infty}(i(p_j))$.

◆□> ◆□> ◆三> ◆三> ・三 のへで

Results

Proposition

A path $p \in A^{\infty}(a)$ is a SPEP if and only if for all $j \in \mathbb{N}$ either $p_j^k \in P^k(i(p_j^k))$ for some k or $p_j \in P^{\infty}(i(p_j))$.

Proposition

For any $\varepsilon > 0$ there is k such that $p \in A^{\infty}(a)$, $a \in A$, $v(p_1) \ge \operatorname{con}(a) + \varepsilon$, imply that $p_j^l \in P^l(i(p_j))$ for some $l \le k$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Results

Proposition

A path $p \in A^{\infty}(a)$ is a SPEP if and only if for all $j \in \mathbb{N}$ either $p_j^k \in P^k(i(p_j^k))$ for some k or $p_j \in P^{\infty}(i(p_j))$.

Proposition

For any $\varepsilon > 0$ there is k such that $p \in A^{\infty}(a)$, $a \in A$, $v(p_1) \ge \operatorname{con}(a) + \varepsilon$, imply that $p_j^l \in P^l(i(p_j))$ for some $l \le k$.

Proposition

When syntax S(u,T) contains finitely many paths, then all SPEPs are represented by a multigraph.

Infinite Elementary Subpaths

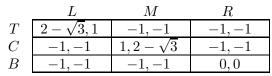
- Payoffs are on the boundary, i.e., $v_i(p) = con_i(a)$ for some i
- We can either try to find the infinite subpaths or construct a subset of SPE paths
- We know roughly what paths are missing and what payoffs they give

Infinite Elementary Subpaths

- Payoffs are on the boundary, i.e., $v_i(p) = con_i(a)$ for some i
- We can either try to find the infinite subpaths or construct a subset of SPE paths
- We know roughly what paths are missing and what payoffs they give
- $\bullet\,$ For high discount $\delta,$ we have to restrict anyways the length of FAF paths in computation

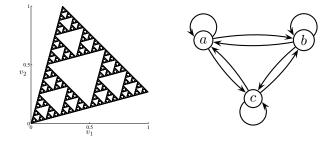
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sierpinski Game



• $A = \{a, b, c\}$ on the diagonal, $\dim_H = \ln 3 / \ln 2 \approx 1.585$

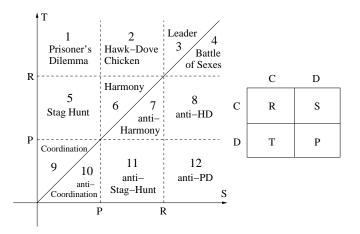
• For $\delta_1=\delta_2=1/2$, the finite elementary subpaths: a, b, c



▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣 …

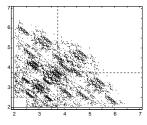
Applications

Twelve Symmetric Ordinal 2x2 Games

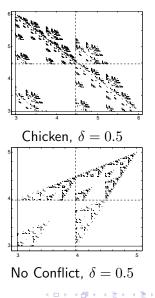


Robinson and Goforth (2005)

Payoff sets with high complexity

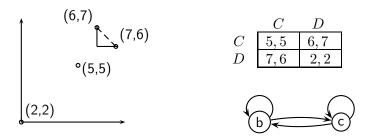


Prisoner's Dilemma, $\delta = 0.65$



э

Payoff sets with low complexity



- Payoff sets similar in Leader, Battle of the Sexes, Coordination and anti-Coordination games
- repetition of two equilibria
- dim $_H = 1$ when δ from 1/2 to $0.6 \dots 0.8$
- when $\delta < 1/2$, isolated points between b and c

Path Dimensions

	1						
game/ δ	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1	0	0	0.69	1.23*	3.37*	5.91*	12.88*
2	0.58	0.81	1.24	2.03*	3.33*	5.80*	12.75^{*}
5	0.73	1.10	1.49	2.26*	3.46*	5.85*	12.76*
6	0	0	1.39	2.12*	3.33*	5.71^{*}	12.44*
Sierpinski	0.91	1.20	1.59	2.15	3.08	4.92	10.43
Upper bound	1.15	1.51	2	2.71	3.89	6.21	13.16
3	0.58	0.76	1	1.36	1.94	3.11	5.52*
4	0.58	0.76	1	1.36	2.12**	3.83**	6.40*
9	0.58	0.76	1	1.46**	2.51**	4.47*	10.57^{*}
10	0.58	0.76	1	1.36	2.25**	4.09*	10.07*

FAF path length restricted to 8 (*) and 12 (**)

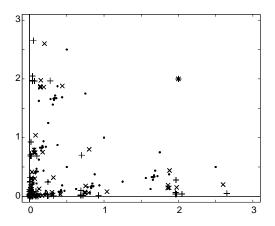
Analysis of equilibria

・ロト ・聞 ト ・ ヨト ・ ヨト

э

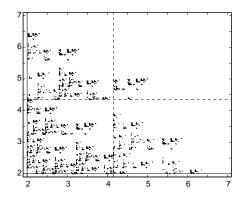
Applications

Changing Discount Factor



- PD with $\delta = 0.35$ (+), $\delta = 0.4$ (x), $\delta = 0.5$ (·)
- maximum payoff around 2.5 decreases, path ca^∞
- Mailath, Obara and Sekiguchi (2002)

Unequal Discount Factors



• PD with $\delta_1 = 0.57$ and $\delta_2 = 0.53$

- payoff set tilted to one side, more sparse on southern side
- some actions to player 2 are not possible as he is less patient
- Lehrer and Pauzner (1999)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

• SPEPs are characterized by elementary subpaths

- all SPEPs are obtained by combining elementary subpaths
- finite elementary subpaths can be rather easily computed
- one implication: equilibrium behavior is "easily predicted"

Summary

- SPEPs are characterized by elementary subpaths
 - all SPEPs are obtained by combining elementary subpaths
 - finite elementary subpaths can be rather easily computed
 - one implication: equilibrium behavior is "easily predicted"
- The set of SPE payoffs is a self-affine set
 - finite number of elementary subpaths \Rightarrow graph-directed self-affine set
 - dimension estimates for the payoff set
 - insight into folk theorem: payoff set becomes richer due to having more SPEPs and due to less contractive mappings

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Methodological Framework

- The set of SPE payoffs is characterized by a fixed-point equation
 - imperfect monitoring: Abreu, Pearce, and Stacchetti (1986,1988), hereafter APS
 - perfect monitoring: Cronshaw and Luenberger (1994)
 - computation: Cronshaw (1997), Judd, Yeltekin, and Conklin (2003)
 - application to prisoners' dilemma game: Mailath, Obara, and Sekiguchi (2002)

Methodological Framework

- The set of SPE payoffs is characterized by a fixed-point equation
 - imperfect monitoring: Abreu, Pearce, and Stacchetti (1986,1988), hereafter APS
 - perfect monitoring: Cronshaw and Luenberger (1994)
 - computation: Cronshaw (1997), Judd, Yeltekin, and Conklin (2003)
 - application to prisoners' dilemma game: Mailath, Obara, and Sekiguchi (2002)
- Analogy with dynamic programming

Dynamic Programming	Repeated Games		
Bellman Equation	APS		
Euler Equation	This work!		

◆□> ◆□> ◆三> ◆三> ・三 のへで

The APS Theorem

Proposition

The set of SPE payoffs V^* is the (unique) largest (in set inclusion) compact set that satisfies

$$V^* = \bigcup_{a \in F(V^*)} C_a(V^*) = \bigcup_{a \in F(V^*)} B_a(C_a(V^*)).$$

The APS Theorem

Proposition

The set of SPE payoffs V^* is the (unique) largest (in set inclusion) compact set that satisfies

$$V^* = \bigcup_{a \in F(V^*)} C_a(V^*) = \bigcup_{a \in F(V^*)} B_a(C_a(V^*)).$$

- $B_a(v) = (I T)u(a) + Tv$, i.e., discounted average of u(a)and v, here T is the matrix with $\delta_1, \ldots, \delta_n$ on diagonal
- V^* is a fixed-point of a particular iterated function system
 - V^* is a subset of a self-affine set W for which $W=\cup_{a\in F(V^*)}B_a(W)$