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1 Introduction

Many organizations seek to achieve their goals by allocating resources to
projects (Salo et al. 2011). For instance, municipalities select projects in
order to maintain a certain standard of services. They need to ensure the
number of e.g. day care centres in a specific region while minimizing the
total costs spend on the build and uphold of the facilities. Typically, costs
are minimized based on ex ante estimates about projects’ expected ex post
costs. However, uncertain cost estimates predicted from the historical data
or gathered from the experts usually differs a lot from the realized projects’
costs. This is why it is hard to choose the true optimal portfolio that min-
imizes the realized ex post costs. Furthermore, systematic project selection
process selects most likely projects whose costs has been underestimated and
the decision-maker is likely to experience post-decision disappointment when
true costs are realized (Brown 1974, Harrison and March 1984, Smith and
Winkler 2006). For example, Flyvbjerg et al. (2002) compared the estimated
and realized costs of public transportation infrastructure projects and con-
cluded that the realized costs of the selected projects were on average 28%
higher than estimated.

Bayesian modeling of estimation uncertainties can be shown to decrease the
realized portfolio cost and to mitigate the post-decision disappointment ex-
perienced by the decision-maker (for an overview, see e.g. Gelman et al.
2004). Bayesian modeling of uncertainties also makes it possible to study
the value of obtaining additional estimates about the projects’ costs by facil-
itating the computation of the expected decrease in the portfolio cost if such
estimates were acquired (La Valle 1968, Marchak and Radner 1972, Gould
1974, Laffont 1980, Delquié 2008). Value of information is studied mainly
through simulations (Harrison and March 1984, Keisler 2004). Vilkkumaa
et al. (2014) presented analytic results of the value of information in the case
where goal is to maximize the selected portfolio value and both projects’
values and estimates were normally distributed.

In this work we developed a Bayesian model to support portfolio cost mini-
mization in the presence of uncertain cost estimates. Furthermore, we derive
analytic results of the value of obtaining additional estimates to support tar-
geting of re-evaluations of projects when projects’ costs and cost estimates
are log-normally distributed. In particular, we show that additional informa-
tion should be acquired about projects whose (i) initial cost estimate is near
the selection threshold and (ii) posterior variance is relatively large.

Rest of the study is structured as follows. In section 2 we develop the frame-
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work for the project selection under uncertainty. Simulated and analytic
results for the value of information and possible applications are presented
in section 3. Section 4 concludes.

2 Project portfolio selection under uncertainty

Consider 1, . . . ,m project candidates out of which the decision-maker (DM)
wants to select a subset, i.e. a portfolio. The selected portfolio is represented
by binary vector z = [z1, . . . , zm] such that zi = 1 if and only if project i is
selected. The objective is to minimize the cost of the portfolio subject to some
relevant constraints. For instance, the value of the portfolio may need to meet
or exceed some predetermined threshold. Other possible constraints may
arise from mutually exclusive projects (e.g. project A can only be selected
if project B is not selected, and vice versa) or logical interdependencies (e.g.
project A can only be selected if project B is selected). Constraints such as
these define the set Z of feasible portfolios.

The projects’ true costs are c = [c1, . . . , cm]′. These costs are independent
realizations of random variables Ci ∼ f(ci). We assume that distributions
f(c1), . . . , f(cm) are known. The DM tries to select a portfolio that mini-
mizes the expected portfolio cost and fulfils portfolio requirements mentioned
above. If the DM could observe the true costs at the time of the selection
decision, the optimal portfolio z(c) would be determined by solving the op-
timization problem

z(c) = arg min
z∈Z

zc.

The DM cannot, however, observe the true costs, but only the estimates
thereof. These estimates cE = [cE1 , . . . , c

E
m]′ are realizations of conditionally

independent random variables (CE
i |Ci = ci) ∼ f(cEi |ci) where f(cEi |ci) is

known for all i and ci. These estimates are assumed to be unbiased, i.e.
E[CE

i | Ci = ci] = ci. The optimal portfolio based on estimates cE is obtained
by solving the optimization problem

z(cE) = arg min
z∈Z

zcE.

Making the selection decision based on uncertain estimates makes it likely
that the selected portfolio will be suboptimal ex post. Moreover, despite the
fact that the projects’ cost estimates are unbiased a priori, the true cost of the
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selected portfolio is expected to be higher than estimated, causing the DM
to experience post-decision disappointment. This is because those projects
whose cost have been underestimated are more likely to be selected.

Figure 1 shows one realization of a portfolio selection problem under uncer-
tainty. Here projects’ costs ci are realizations of a log-normally distributed
random variable Ci with a mean of 1 million and a variance of 0.01 million.
Cost estimates cEi are realizations of random variable (CE

i |Ci = ci) = Eici,
where Ei ∼ LogN(−0.12

2
, 0.12). First parameter chosen such that estimates

are unbiased. It can be readily checked that E[CE
i | Ci = ci] = E[Ei]ci = ci.

Projects values vi are known to the DM and they are realizations of random
variable Vi = ci+N( ci

5
, ci
15

). Marker size is proportional to the project’s value.
Costs are minimized with portfolio value restricted to be over 4.25 million.
True optimal portfolio z(c) is marked with black markers and z(cE) is marked
with circled markers. We can see that there is only one true optimal project
in z(cE). Because costs of projects A and J are underestimated, they are
included in z(cE) and true optimal projects D and I are omitted. Estimated,
realized, and optimal portfolio costs, post-decision disappointment, and port-
folio value of projects in figure 1 are presented in table 1. We can see that
the realized portfolio cost is 3.8% greater than the optimal portfolio cost.
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Figure 1: True costs and cost estimates of 10 projects whose costs are log-normally
distributed with a mean of 1 million and variance of 0.01 million. Costs are min-
imized with portfolio value restricted to be over 4.25 million. Marker size is pro-
portional to the project’s value. The true optimal portfolio z(c) is marked with
black markers. Optimal portfolio z(cE) selected based on the estimates is marked
with circled markers.
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Estimated portfolio cost 2.74
Realized portfolio cost 3.53

Post-decision disappointment 0.79
Optimal portfolio cost 3.40

Portfolio value 4.25

Table 1: Estimated, realized, and optimal portfolio costs, post-decision disappoint-
ment, and portfolio value of projects in figure 1.

Modeling projects’ costs with log-normal distribution is reasonable because
(i) the domain of the log-normal distribution is non-negative and (ii) rela-
tively large portion of probability mass is centred around small and moderate
values so that probability of considerably large values is small (Keisler 2004).
The log-normality also allows the cost estimates to be situated more likely
on the left side of the true projects’ costs.

3 Bayesian modeling of cost uncertainties in

portfolio selection

3.1 Bayesian uncertainty model

Instead of making decisions based on the uncertain estimates cEi alone, one
can use Bayesian analysis to obtain the distribution for the projects’ true
costs given the estimates. In particular, the posterior distribution f(ci|cEi )
for the projects’ true costs given the estimates (Ci|CE

i = cEi ) can be obtained
from the prior and likelihood distributions f(ci) and f(cEi |ci) through Bayes’
rule f(ci|cEi ) ∝ f(ci)f(cEi |c).

In general, there is no closed form expression for the posterior distribution.
Consider, however, the case in which f(ci) = LogN(µi, σ

2
i ) and f(cEi |ci) =

ciLogN(− τ2i
2
, τ 2i ) so that indeed the assumption of unbiased estimates E[CE

i |
Ci = ci] = ci holds. Proposition 1 below states that in this case a closed-form
expression can be obtained. All proofs are in Appendix A.

Proposition 1 Assume Ci ∼ LogN(µi, σ
2
i ) and CE

i = ciEi, where Ei ∼
LogN(− τ2i

2
, τ 2i ). Then,

(
Ci | CE

i = cEi
)
∼ LogN

(
σ2
i

σ2
i + τ 2i

(ln(cEi )− τ 2i
2

) +
τ 2i

σ2
i + τ 2i

µi,
σ2
i τ

2
i

σ2
i + τ 2i

)
.
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Posterior distribution f(ci|cEi ) can be used, for instance, to compute the
projects’ expected true costs given the cost estimates,

cBi = E[Ci|CE
i = cE] =

∞∫
0

cif(ci|cEi )dci. (1)

Given the assumptions of Proposition 1, for instance, we have

cBi = (cEi )
σ2i

σ2
i
+τ2
i · exp

(
τ 2i (σ2

i + µi)

σ2
i + τ 2i

)
. (2)

The expected costs cB = [cB1 , . . . , c
B
m]′ can then be used as a basis for portfolio

selection:

z(cB) = arg min
z∈Z

zcB. (3)

To study the average performance of (3), we a define random variable

CB
i = E[Ci|CE

i ] =

∞∫
0

cif(ci|CE
i )dci. (4)

which can be obtained from (1) by replacing the observed estimate cEi with
the random variable CE

i .

By definition, z(cB) minimizes the expected portfolio cost. Moreover, Propo-
sition 2 states that z(cB) eliminates the expected positive gap between the
true and estimated portfolio cost, i.e., post-decision disappointment. The
proof is analogous to that of Proposition 3 in Vilkkumaa et al. (2014).

Proposition 2 Let CE be a conditionally unbiased estimator of C and z(cB)
satisfy (3). Then,

E[z(cB)cB − z(cB)C|CE = cE] = 0,

for all cE, and hence E[z(CB)CB − z(CB)C] = 0, where CB is given by (4).

Figure 2 shows how the selection presented in figure 1 changes when it is
done based on estimates cB obtained from (2). We can see that all of the
estimates move closer to the prior mean. Furthermore, portfolios z(c) and
z(cB) are the same. Estimated, realized, and optimal portfolio costs, post-
decision disappointments, and portfolio values of projects in figures 2a and
2b are presented in table 2. We can see that post-decision disappointment
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decreases by 0.48 million, even though, estimated portfolio cost increases only
by 0.35 million.
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Figure 2: True costs and cost estimates for projects in figure 1 and their Bayes
estimates cB. Costs are minimized with portfolio value restricted to be over 4.25
million. Marker size is proportional to the project’s value. The true optimal
portfolio is marked with black markers. Optimal portfolio selected based on the
estimates is marked with circled markers.

Estimates Bayes estimates
Estimated portfolio cost 2.74 3.09
Realized portfolio cost 3.53 3.40

Post-decision disappointment 0.79 0.31
Optimal portfolio cost 3.40 3.40

Portfolio value 4.25 4.26

Table 2: Estimated, true, and optimal portfolio costs, post-decision disappoint-
ments, and portfolio values of projects in figures 2a and 2b.
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3.2 Value of additional information

Bayesian analysis can also be used to study the expected value of obtaining
additional cost estimates for the projects prior to actually acquiring these
estimates. In keeping with the standard definition, we define the expected
value of information CE (EVI) as the expected decrease in portfolio cost when
selecting the portfolio by taking this information into account (La Valle 1968,
Marchak and Radner 1972, Gould 1974, Laffont 1980, Delquié 2008).

Definition 1 The expected value of information CE is

EVI[CE] = min
z∈Z

zE[C]− E[min
z∈Z

zE[C|CE]].

This definition can be applied when one or more project evaluation rounds
have been completed. In what follows, E[C] denotes the vector of expected
project costs resulting from all the earlier evaluations. Prior to observing
cE, the additional information is a random variable CE so that the expected
projects’ costs that have been revised based on the additional information
are represented by the random variable E[C|CE]. CE may contain additional
estimates for a single project or multiple projects at a time.

Because E[C|CE] is random, the computation of EVI requires solving a
stochastic optimization problem with binary decision variables. In gen-
eral, this is done through simulation by sampling values of cE, obtaining
E[C|CE = cE] and solving the optimization problem minz∈Z zE[C|CE = cE].
Figure 3 shows the EVI for the projects in Figures 1 and 2. Project D has the
greatest EVI which means that re-evaluations of D are most likely to change
the optimal portfolio and decrease the portfolio cost.

To derive analytic results for EVI, we consider the case in which CE
i is in-

dependent of Cj for all i 6= j, there is only one feasibility constraint on the
number of projects in the portfolio, and one additional evaluation is acquired
for project i only. If project i is not in the current optimal portfolio, the port-
folio cost changes only if the evaluation cEi is low enough so that E[Ci|CE

i ]
becomes smaller than the highest expected project cost in the current portfo-
lio, denoted by x+. In this case, the portfolio cost changes by x+−E[Ci|CE

i ].
If project i is in the current portfolio, the portfolio cost changes only if the
evaluation cEi is high enough so that E[Ci|CE

i ] becomes greater than the low-
est expected project cost not in the current portfolio, denoted by x−, in which
case the portfolio cost changes by E[Ci|CE

i ]− x−. Prior to observing cEi , the
EVI is computed by taking expectations over random CE

i .
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Figure 3: Simulated EVI for the projects presented in figure 1. Average values of
5000 simulation rounds with 95% confidence intervals.

Proposition 3 Let Z = {z ∈ {0, 1}m |
∑
i

zi = b}, b ∈ {1, . . . ,m − 1} and

let CE
i , Cj be independent for all i 6= j and z∗ ∈ argmin{zE[C] | z ∈ Z}.

The expected value of an additional evaluation CE
i of project i is

EVI[CE
i ] =

{
E
[
max{0, x+ − E

[
Ci|CE

i

]
}
]
, if z∗i = 0

E
[
max{0,E

[
Ci|CE

i

]
− x−}

]
, if z∗i = 1

, (5)

where x+ = maxj{E[Cj]|z∗j = 1} and x− = minj{E[Cj]|z∗j = 0}.

Let us consider the case in which f(ci) = LogN(µi, σ
2
i ) and f(cEi |ci) =

ciLogN(− τ2i
2
, τ 2i ). Proposition 4 below states that under these assumptions,

a closed-form expression can be obtained for the distribution of E[Ci|CE
i ].

Proposition 4 Let the assumptions of Proposition 1 hold. We can derive

E[Ci|CE
i ] ∼ LogN(µi +

σ2
i τ

2
i

2(σ2
i + τ 2i )

,
σ4
i

σ2
i + τ 2i

). (6)

Using the closed-form expression for E[Ci|CE
i ], we obtain a closed-form ex-

pression for EVI as well.

Proposition 5 Let the assumptions of Proposition 1, Proposition 3, and
Proposition 4 hold. The expected value of an additional evaluation of project
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i is

EVI[CE
i ] = f(yi, ρi) =

x
−
[
yiΦ

(
ln(yi)
ρi

+ 1
2
ρi

)
− Φ

(
ln(yi)
ρi
− 1

2
ρi

)]
, if z∗i = 1

x+
[
Φ
(

ln(yi)
ρi

+ 1
2
ρi

)
− 1

yi
Φ
(

ln(yi)
ρi
− 1

2
ρi

)]
, if z∗i = 0

,

where yi = min{x+
xi
, xi
x−
} ∈ [0, 1], xi = eµi+

1
2
τ2i = E[CB

i ], ρi =
τ2i√
τ2i +σ

2
i

, and Φ

denotes the cumulative density function of the standard normal distribution.
Function f(yi, ρi) is non-negative and increasing in yi and ρi.

Proposition 5 implies that it pays off to obtain additional estimates about
those projects with (i) initial cost estimates close to the selection threshold
(x

+

xi
or xi

x−
close to 1) and (ii) large posterior variance (eρ

2
i − 1)x2i . Results

are intuitively reasonable because when expected cost is near the selection
threshold, new evaluation might push the expected project cost over the
selection threshold and the optimal portfolio would change. Same applies
with cost’s posterior variance. With large variance, it is possible that new
evaluation pushes the expected project cost over the selection threshold and
the optimal portfolio changes.

Figure 4 shows how EVI helps to select which projects should be re-evaluated.
In this example, 20 projects out of 100 are to be selected. Here, on the
left side are the projects that belong to the current optimal portfolio and
on the right side are the projects that don’t belong to the current optimal
portfolio. Contours of EVI are also shown in the figure. The projects’ costs
are realizations of independent log-normally distributed random variables
with a common prior mean 1. The project population consists of two types
(50 projects each). The costs of type 1 projects have more variability and
can be more accurately evaluated than type 2 projects. This is reflected by
parameters Var[Ci] = 0.5 and Var[Ei] = 0.05 for type 1 projects and by
parameters Var[Ci] = 0.3 and Var[Ei] = 0.1 for type 2 projects. Assume
that there are resources available for re-evaluating 30 projects. One possible
strategy would be to choose 30 projects with the lowest expected costs for
re-evaluating. Another strategy could be to use EVI for selecting projects to
be re-evaluated. The selected projects for these two strategies are illustrated
in Figure 4 such that those 30 projects with the lowest expected costs are
denoted with black markers and those with the highest EVI with dashed
ellipses. Figure shows that EVI suggests to re-evaluate both optimal and
non-optimal projects that are near the selection threshold. In the case that
two projects have the same expected cost, EVI suggests to re-evaluate the
project with the better evaluation accuracy, hence, greater ρi.
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Figure 4: Contours of EVI[CEi ] for log-normally distributed project costs and
evaluation errors (see Proposition 5). Selection of 20 out of 100 projects. 50
projects with E[Ci] = 1, Var[Ci] = 0.5 and Var[Ei] = 0.05 and 50 projects with
E[Ci] = 1, Var[Ci] = 0.3 and Var[Ei] = 0.1. 30 projects with the lowest costs
marked with black markers. 30 projects with highest EVI marked with dashed
ellipses.

3.3 Optimal division of resources between project fund-
ing and evaluation

Project evaluation can be expensive and time-consuming. Therefore, it is
important to consider how the total resources should be divided between
project funding and evaluation. One strategy for doing this could be to
compute the EVIs for all projects and, if there was at least one project
whose EVI would exceed the cost of obtaining one additional evaluation, to
re-evaluate the project with the maximal EVI. This process could be repeated
several times. Due to time constraints, however, such an approach may not be
feasible, but it may be necessary to submit multiple projects for re-evaluation
simultaneously.
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Figure 6 compares the performances of such a batch-mode approach in a set-
ting where 20 out of 100 projects are to be selected, and projects are selected
for re-evaluation in each round based on four different strategies: (i) com-
plete re-evaluation of all 100 projects, (ii) re-evaluation of 30 projects with
the highest EVI, (iii) re-evaluation of 30 projects with the lowest expected
costs, and (iv) re-evaluation of 30 randomly selected projects. The average
performance of these strategies is computed using 5000 simulation rounds
such that E[Ci] = 1, Var[Ci] = 0.3, and Var[Ei] = {0.1, 0.3, 0.5}. Distribu-
tion of Ei with Var[Ei] = 0.5 is illustrated in figure 5. Applied evaluation
costs are 0.5% and 1% of the prior mean cost. From figure 6 we can see that
strategy with 30 highest EVI outperforms all other strategies in all cases.
The figure also shows that the better the evaluation accuracy is, the less
profitable the re-evaluations are. The found optimum, however, gets better
along with the evaluation accuracy.
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Figure 5: Probability density function of log-normally distributed random variable
Ei with a mean of 1 and a variance of 0.5. Dark gray area illustrates how far from
the median 50% of the values lie.
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Figure 6: Performance of four different re-evaluation strategies measured by port-
folio cost plus evaluation costs. Applied parameters are E[Ci] = 1, Var[Ci] = 0.3,
and Var[Ei] = {0.1, 0.3, 0.5}. Evaluation costs are 0.5% and 1% times prior mean
cost.
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Clearly, there are various different kinds of strategies to select projects for re-
evaluation. For instance, the number of evaluation rounds and the number
of projects to be re-evaluated on each evaluation round can be changed.
Assuming that the same number of evaluations is acquired on each round,
the optimal number of rounds and evaluations can be determined from the
optimization problem

min
k,e

[E[min
z∈Z

zE[C|CE(k, e)]] + (n+ k(e− 1))ce], (7)

where n is the number of project proposals, e is the number of evaluation
rounds and ce is the cost of evaluating one project. CE(k, e) denotes the
random variable which represents the cost estimates based on the initial
evaluations for all projects as well as the additional evaluations obtained in
rounds 2, . . . , e for projects with the k highest EVIs in these rounds. Here,
we assume that e ≤ 4, because execution of more than four evaluation rounds
is considered to be impractical in real life portfolio selection problems.

Problem (7) can be solved through simulation by sampling values of the
objective function for different combinations of (k, e). Figure 7 shows the
optimal division of resources, the optimal number of evaluation rounds e and
the optimal number of evaluations k for different evaluation costs and evalu-
ation accuracies. We can see that the total number of evaluations decreases
and total money spend on evaluations and project funding increases when the
evaluation cost increases. Comparing of figures 7a and 7b shows that with
better evaluation accuracy the total number of evaluations is smaller and the
found portfolio cost is better. Also, in both cases, the realized portfolio cost
increases along with the evaluation costs, even though, share of the money
spend on project funding decreases.
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Figure 7: Optimal division of resources for different evaluation costs and evaluation
accuracies. Dark and light gray bars indicate the share of resources allocated to
project funding and evaluation, respectively.

4 Discussion and conclusions

In this study we developed a Bayesian model to account for cost uncertainties
in project portfolio selection. Bayesian modeling of uncertainties was shown
to minimize the expected cost of the selected portfolio and to eliminate the
expected positive gap between the true and estimated portfolio cost, i.e.,
post-decision disappointment. Moreover, with Bayesian modeling it is pos-
sible to study the value of obtaining additional estimates and determine the
projects to be re-evaluated. Analytic results were derived for expected value
of additional information in the case where projects’ costs and cost estimates
were log-normally distributed. A general guideline would be to re-evaluate
projects whose (i) current expected cost is near the selection threshold and
(ii) posterior variance is relatively large. Furthermore, we studied how re-
sources should be divided between project funding and evaluation and showed
how this division depends on the evaluation cost and evaluation accuracy.

Flyvbjerg et al. (2002) did comparative studies of actual costs and estimated
costs in the transportation infrastructure projects and concluded that the cost
estimates used in the decision making for project selection are highly, system-
atically, and significantly deceptive. With the proposed Bayesian framework
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decision makers can gather more precise information about projects’ costs
and mitigate the experienced post-decision disappointment. Additionally,
our study showed that it can be more cost-efficient to re-evaluate only a
subset of project proposals and a method for selecting the subset was pre-
sented. Performed cost-efficiency analyses showed that presented method for
selection of projects to be re-evaluated performed better than conventional
methods like short-list method or complete re-evaluation.

Our results can be extended in several ways. Firstly, it would be important
to apply the model to real data. Usually companies track cost-efficiency of
past executed projects, thus, distribution parameters needed in presented
framework could be estimated from the historical data. Secondly, framework
could be extended by developing a model that accounts both value and cost
uncertainties and correlations between them two. This way number of targets
of application could be substantially increased.
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Appendix A

Proof of Proposition 1

By assumption, Ci ∼ LogN(µi, σ
2
i ) and CEi = ciEi, where Ei ∼ LogN(− τ2i

2 , τ
2
i ).

Then, ln(Ci)−
τ2i
2 ∼ N(µi −

τ2i
2 , σ

2
i ). With normal prior and log-normal likelihood

(CEi | Ci = ci) ∼ LogN(ln(ci)−
τ2i
2 , τ

2
i ), the posterior distribution for the unknown

first parameter of the likelihood distribution becomes (see e.g. Fink 1997)(
ln(Ci)−

τ2i
2
| CEi = cEi

)
∼ N

(
σ2i

σ2i + τ2i
ln(cEi ) +

τ2i
σ2i + τ2i

(µi −
τ2i
2

),
σ2i τ

2
i

σ2i + τ2i

)
⇒

(
ln(Ci) | CEi = cEi

)
∼ N

(
σ2i

σ2i + τ2i
(ln(cEi )− τ2i

2
) +

τ2i
σ2i + τ2i

µi,
σ2i τ

2
i

σ2i + τ2i

)
⇒

(
Ci | CEi = cEi

)
∼ LogN

(
σ2i

σ2i + τ2i
(ln(cEi )− τ2i

2
) +

τ2i
σ2i + τ2i

µi,
σ2i τ

2
i

σ2i + τ2i

)
. �

Proof of Proposition 3

Proof is done by observing how the evaluation CEi changes the expected portfolio

value γ = maxz∈Z(b) zE[C] = z∗E[C], where Z(b) = {z ∈ {0, 1}m |
m∑
i=1

zi ≤ b} and

z∗ ∈ Z(b). For any i ∈ {0, . . . ,m}, CEi , Cj are independent whenever i 6= j and
thus E[Cj |CEi ] = E[Cj ]. Hence by definition

EVI[CEi ] = γ − E
[

min
z∈Z(b)

zE[C|CEi ]

]

= γ − E

 min
z∈Z(b)

ziE[Ci|CEi ] +
m∑
j=1
j 6=i

zjE[Ci]




= γ − E

min{ min
z∈Z(b)
zi=0

zE[C],E[Ci|CEi ] + min
z∈Z(b−1)
zi=0

zE[C]}

 . (8)

If z∗i = 0, we have

min
z∈Z(b)
zi=0

zE[C] = γ, min
z∈Z(b−1)
zi=0

zE[C] = γ − x+,
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which can be substituted into (8) to obtain

EVI[CEi ] = γ − E
[
min{γ,E[Ci|CEi ] + γ − x+}

]
= γ − E

[
γ + min{0,E[Ci|CEi ]− x+}

]
= −E

[
min{0,E[Ci|CEi ]− x+}

]
= E

[
max{0, x+ − E[Ci|CEi ]}

]
.

If z∗i = 1, we have

min
z∈Z(b)
zi=0

zE[C] = γ − E[Ci] + x−, min
z∈Z(b−1)
zi=0

zE[C] = γ − E[Ci],

which can be substituted into (8) to obtain

EVI[CEi ] = γ − E
[
min{γ − E[Ci] + x−,E[Ci|CEi ] + γ − E[Ci]}

]
= −E

[
min{−E[Ci] + x−,E[Ci|CEi ]− E[Ci]}

]
= −E

[
min{−E[Ci] + x− − E[Ci|CEi ] + E[C], 0}

]
− E

[
E[Ci|CEi ]

]
+ E[Ci]

= −E
[
min{x− − E[Ci|CEi ], 0}

]
= E

[
max{E[Ci|CEi ]− x−, 0}

]
. �

Proof of Proposition 4

Let CEi be random. Then, equation (2) gives

ln(E
[
Ci | CEi

]
) =

1

σ2i + τ2i
(σ2i ln(CEi ) + σ2i τ

2
i + τ2i µi). (9)

From the likelihood distribution (CEi | Ci = ci) ∼ LogN(ln(ci)−
τ2i
2 , τ

2
i ) we get

ln(CEi ) ∼ N(ln(Ci)−
τ2i
2
, τ2i ).

Because the prior distribution is ln(Ci) ∼ N(µi, σ
2
i ), we can write

ln(CEi ) = ln(Ci)−
τ2i
2

+ δi = µi + εi −
τ2i
2

+ δi, (10)

where εi ∼ N(0, σ2i ), δi ∼ N(0, τ2i ) and εi ⊥ δi. Substituting (10) into (9) gives

ln(E[Ci|CEi ]) =
1

σ2i + τ2i
(σ2i (µi + εi −

τ2i
2

+ δi) + σ2i τ
2
i + τ2i µi)

= (µi +
σ2i τ

2
i

2(σ2i + τ2i )
)︸ ︷︷ ︸

constant, V ar(·)=0

+
σ2i

σ2i + τ2i
(εi + δi)︸ ︷︷ ︸

random, E[·]=0

∼ N(µi +
σ2i τ

2
i

2(σ2i + τ2i )
,

σ4i
σ2i + τ2i

).
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From this it follows that

E[Ci|CEi ] ∼ LogN(µi +
σ2i τ

2
i

2(σ2i + τ2i )
,

σ4i
σ2i + τ2i

). � (11)

Proof of Proposition 5

We first need to derive closed-form representations for partial expectations E[X|X <
k] and E[X|X > k]. Let X ∼ LogN(µ, σ2). Partial expectation E[X|X > k] is
defined

E[X|X > k] =

∞∫
k

xf(x)dx

/
Pr(X > k), (12)

where f(x) is the probability density function of random variable X. From (12)

we need to solve g(k) =
∞∫
k

xf(x)dx. From the properties of log-normal distribution

we have

g(k) =

∞∫
k

x

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 dx.

With a change of variables y = ln(x)−µ
σ and dx = σeσy+µ we get

g(k) =

∞∫
ln(k)−µ

σ

1

σ
√

2π
e−

y2

2 σeσy+µdy =

∞∫
ln(k)−µ

σ

1√
2π
e−

y2

2
+σy+µdy

=

∞∫
ln(k)−µ

σ

1√
2π
e−

1
2
(y−σ)2+(µ+σ2

2
)dy.

Second change of variables v = y − σ and dy = dv gives

g(k) =

∞∫
ln(k)−µ−σ2

σ

1√
2π
e−

1
2
(v)2+(µ+σ2

2
)dv = eµ+

σ2

2

∞∫
ln(k)−µ−σ2

σ

1√
2π
e−

1
2
v2dv

= eµ+
σ2

2

(
1− Φ

(
ln(k)− µ− σ2

σ

))
= eµ+

σ2

2 Φ

(
µ+ σ2 − ln(k)

σ

)
,

where Φ is the cumulative probability function of the standard normal distribution.
Then,

E[X|X > k] = eµ+
σ2

2 Φ

(
µ+ σ2 − ln(k)

σ

) /
Pr(X > k)

= eµ+
σ2

2 Φ

(
µ+ σ2 − ln(k)

σ

) /
Φ

(
µ− ln(k)

σ

)
(13)
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Partial expectation E[X|X < k] is defined

E[X|X < k] =

k∫
0

xf(x)dx

/
Pr(X < k). (14)

From (14) we need to solve h(k) =
k∫
0

xf(x)dx. This can be formulated

h(k) =

k∫
0

x

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 dx. =

ln(k)−µ
σ∫

−∞

1√
2π
e−

y2

2
+σy+µdy

=

ln(k)−µ
σ∫

−∞

1√
2π
e−

1
2
(y−σ)2+(µ+σ2

2
)dy. =

ln(k)−µ−σ2
σ∫

−∞

1√
2π
e−

1
2
(v)2+(µ+σ2

2
)dv

= eµ+
σ2

2

ln(k)−µ−σ2
σ∫

−∞

1√
2π
e−

1
2
v2dv = eµ+

σ2

2 Φ

(
ln(k)− µ− σ2

σ

)

Then,

E[X|X < k] = eµ+
σ2

2 Φ

(
ln(k)− µ− σ2

σ

) /
Φ

(
ln(k)− µ

σ

)
. (15)

Denote CBi = E[Ci|CEi ]. From (11) we get CBi ∼ LogN(µi +
σ2
i τ

2
i

2(σ2
i+τ

2
i )
,

σ4
i

σ2
i+τ

2
i

). Let

ρ2i =
τ4i

τ2i +σ
2
i

and ξi =
τ2i σ

2
i

τ2i +σ
2
i
, hence, ρ2i + ξ2i = τ2i . Using equations (13) and (15)

gives

E[CBi |CBi > x−]

= e
µi+

σ2i τ
2
i

2(σ2
i
+τ2
i
)
+

σ4i
σ2
i
+τ2
i

2
Φ

µi +
σ2
i τ

2
i

2(σ2
i+τ

2
i )

+
σ4
i

σ2
i+τ

2
i
− ln(x−)

σ2
i√

σ2
i+τ

2
i

 /
Φ

µi +
σ2
i τ

2
i

2(σ2
i+τ

2
i )
− ln(x−)

σ2
i√

σ2
i+τ

2
i


= eµi+

1
2
τ2i Φ

(
µi + 1

2τ
2
i + 1

2ρ
2
i − ln(x−)

ρi

) /
Φ

(
µi + 1

2ξ
2
i − ln(x−)

ρi

)
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and

E[CBi |CBi < x+]

= e
µi+

σ2i τ
2
i

2(σ2
i
+τ2
i
)
+

σ4i
σ2
i
+τ2
i

2
Φ

 ln(x+)− µi −
σ2
i τ

2
i

2(σ2
i+τ

2
i )
− σ4

i

σ2
i+τ

2
i

σ2
i√

σ2
i+τ

2
i

 /
Φ

 ln(x+)− µi −
σ2
i τ

2
i

2(σ2
i+τ

2
i )

σ2
i√

σ2
i+τ

2
i

 .

= eµi+
1
2
τ2i Φ

(
ln(x+)− µi − 1

2τ
2
i − 1

2ρ
2
i

ρi

) /
Φ

(
ln(x+)− µi − 1

2ξ
2
i

ρi

)

If z∗i = 0, equation (5) implies

EVI[CEi ]

= E
[
max{0, x+ − CBi }

]
= Pr

(
CBi < x+

) (
x+ − E[CBi |CBi < x+]

)
= Φ

(
ln(x+)− µi − 1

2ξ
2
i

ρi

)(
x+ − E[CBi |CBi < x+]

)
= Φ

(
ln(x+)− µi − 1

2τ
2
i − 1

2ρ
2
i

ρi

)
x+ − eµi+

1
2
τ2i Φ

(
ln(x+)− 1

2τ
2
i − 1

2ρ
2
i

ρi

)

If z∗i = 1, equation (5) implies

EVI[CEi ]

= E
[
max{0, CBi − x−}

]
= Pr

(
CBi > x−

) (
E[CBi |CBi > x−]− x−

)
= Φ

(
µi + 1

2ξ
2
i − ln(x−)

ρi

)(
E[CBi |CBi > x−]− x−

)
= eµi+

1
2
τ2i Φ

(
µi + 1

2τ
2
i + 1

2ρ
2
i − ln(x−)

ρi

)
− Φ

(
µi + 1

2τ
2
i + 1

2ρ
2
i − ln(x−)

ρi

)
x−

Denote xi = eµi+
1
2
τ2i = E[CBi ] and yi = min{x+xi ,

xi
x− }. We know that yi ∈ [0, 1]

because if z∗i = 1, x−−E[CBi ] ≥ 0, and if z∗i = 0, E[CBi ]− x+ ≥ 0. Thus, EVI can
be formulated

EVI[CEi ] = f(yi, ρi) =

x
−
[
yiΦ

(
ln(yi)
ρi

+ 1
2ρi

)
− Φ

(
ln(yi)
ρi
− 1

2ρi

)]
, if z∗i = 1

x+
[
Φ
(
ln(yi)
ρi

+ 1
2ρi

)
− 1

yi
Φ
(
ln(yi)
ρi
− 1

2ρi

)]
, if z∗i = 0

.

We need to study how f(yi, ρi) changes with respect to yi and ρi. Consider the



21

case with z∗i = 1. Then, yi = xi
x− , and

∂f(yi, ρi)

∂yi
= x−

(
Φ

(
ln(yi)

ρi
+

1

2
ρi

)
+

1

ρi
ϕ

(
ln(yi)

ρi
+

1

2
ρi

)
− 1

yiρi
ϕ

(
ln(yi)

ρi
− 1

2
ρi

))
> x−

(
1

ρi
ϕ

(
ln(yi)

ρi
+

1

2
ρi

)
− 1

yiρi
ϕ

(
ln(yi)

ρi
− 1

2
ρi

))
=

x−

ρi
√

2π

(
e
− 1

2

(
ln2(yi)

ρ2
i

+ln(yi)+
ρ2i
4

)
− 1

yi
e
− 1

2

(
ln2(yi)

ρ2
i

−ln(yi)+
ρ2i
4

))

=
x−

ρi
√

2π
e
− 1

2

(
ln2(yi)

ρ2
i

+
ρ2i
4

)(
1
√
yi
− 1
√
yi

)
= 0,

so that f(yi, ρi) is increasing in yi. Also,

∂f(yi, ρi)

∂ρi
= x−

(
ϕ

(
ln(yi)

ρi
− 1

2
ρi

)(
ln(yi)

ρ2i
+

1

2

)
− yiϕ

(
ln(yi)

ρi
+

1

2
ρi

)(
ln(yi)

ρ2i
− 1

2

))
=

x−√
2π
e
− 1

2

(
ln2(yi)

ρ2
i

+
ρ2i
4

)(
√
yi

(
ln(yi)

ρ2i
+

1

2

)
−√yi

(
ln(yi)

ρ2i
− 1

2

))
=
x−
√
yi√

2π
e
− 1

2

(
ln2(yi)

ρ2
i

+
ρ2i
4

)
> 0,

so that f(yi, ρi) is increasing in ρi. The proof for z∗i = 0 is similar. �
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