
Aalto University

School of Science

Tuomas Rintamäki

A parallel implementation of the ADMM algorithm for

power network control

The document can be stored and made available to the public on the open internet pages of

Aalto University. All other rights are reserved. We acknowledge the computational resources

provided by the Aalto Science-IT project.

Mat-2.4108 Independent Research Project in Applied Mathematics.

Espoo, March 31, 2015

Supervisor: Professor Ahti Salo

Instructor: Professor Ahti Salo

Aalto University

School of Science

Degree Programme in Engineering Physics and Mathematics ABSTRACT

Author: Tuomas Rintamäki

Title: A parallel implementation of the ADMM algorithm for power network

control

Date: March 31, 2015 Pages: 3+18

Major subject: Systems and Operations Research

Supervisor: Professor Ahti Salo

Instructor: Professor Ahti Salo

In this study, a distributed optimization algorithm called alternating direction method of

multipliers (ADMM) is applied with receding horizon control (RHC) to a energy management

problem for a power network. The solve times are in the order of milliseconds and they are

observed to be constant with respect to the problem size when the number of processors

varies accordingly. Consequently, the RHC controller could be implemented for operating

our simple network at a kilohertz sampling rate. The model is implemented in MPI and is

fully parallellized.

Keywords: Power network modelling, distributed optimization, ADMM, receding

horizon control, MPI

Language: English

ii

Contents

1 Introduction 1

2 Preliminaries 2

2.1 Dual ascent . 2

2.2 Dual decomposition . 3

2.3 Method of multipliers . 3

3 Alternating direction method of multipliers 4

3.1 Proximal operators . 6

4 Exchange problem in an electrical power system 7

5 Receding horizon control under load imbalances 10

6 Conclusion 16

iii

1 Introduction

Convex optimization problems with huge datasets can sometimes be solved efficiently using

distributed optimization techniques. For example, Boyd et al. (2010) solves a least squares

problem with a 30 GB dataset in 6 minutes using an algorithm called alternating direction

method of multipliers (ADMM). In this study, ADMM is presented and applied to a network

energy management problem using a parallel implementation. The algorithm has been applied

to optimal power flow problems in a smart grid (see Kraning et al., 2013 and Chakrabarti et al.,

2014, for example), image processing (Chen et al., 2015), wireless communication (Leinonen

et al., 2013), as well as data mining (Lubell-Doughtie and Sondag, 2013), and found to ex-

hibit linear convergence rate. In many applications, ADMM outperforms state-of-the-art serial

algorithms (see Ramani and Fessler, 2012 for a comparison in a biomedical application).

However, the standard ADMM has been found to exhibit scalability issues in some problem

types, which has motivated the development of scalable modifications (see Erseghe, 2014, for

example). Parallel implementation also requires communication between threads and variants

are developed to minimize the need for communication for security and data loss reasons (Mota

et al., 2012). Since high precision solutions are found to take many ADMM iterations, ADMM

is best suited for applications, where modest accuracy is enough (Boyd et al., 2010).

Historically, distributed and parallel algorithms have already been discussed in Bertsekas

and Tsitsiklis (1989). However, they were not accessible until recently as standard computers

now have multicore processors and cloud computing services such as Amazon EC2 are becom-

ing cheaper. Moreover, general purpose computing on graphics processing units (GPGPU)

allows running algorithms on thousands of threads on a single machine. Moreover, tools such

as CVXGEN (Mattingley and Boyd, 2015) and Message Passing Interface (MPI) allow rapid

development of parallel algorithms.

The outline of this study is as follows. In Section 2, we present algorithms that ADMM is

based on. Then, in Section 3 the standard ADMM problem is presented and a few examples

1

provided. Section 4 introduces our application of ADMM to an energy management problem

and in Section 5 we optimize power flows and generation under load imbalances using reced-

ing horizon control, which utilises the scalability of ADMM. Finally, Section 6 concludes by

presenting ideas for developing the model further.

2 Preliminaries

Following Boyd et al. (2010), we briefly review dual ascent, dual decomposition and the method

of multipliers that are precursors to alternating direction method of multipliers.

2.1 Dual ascent

Consider a convex optimization problem

minimize
x

f (x)

subject to Ax = b,
(2.1)

with x ∈ Rn, A ∈ Rm×n, b ∈ Rm, and f : Rn→ R convex. The Lagrangian for Eq. (2.1) is

L(x,y) = f (x)+ y>(Ax−b), (2.2)

where y ∈ Rm is the vector of dual variables. The associated dual function is

g(y) = inf
x

L(x,y). (2.3)

The dual problem is

maximizeg(y). (2.4)

Assuming that f has an unique optimizer and that strong duality holds, we can recover the

optimal primal point x∗ from the optimal dual point y∗ as

x∗ = argmin
x

L(x,y∗). (2.5)

2

Dual ascent is the gradient method for the dual problem that consist of the following steps

(Boyd et al., 2010)

xk+1 = argmin
x

L(x,yk) (2.6)

yk+1 = yk + α
k
∇g(yk), (2.7)

where ∇g(yk) = Axk+1−b and αk is the step size for iteration k. The drawback of dual ascent

is that it may converge slowly and the x-update step can become unbounded from below.

2.2 Dual decomposition

If the function f is separable as f =
n
∑

i=1
fi(xi), where xi are subvectors of x = (x1, . . . ,xn), and

the matrix A can be partitioned into [A1 . . .An] so that Ax =
n
∑

i=1
Aixi, then the Lagrangian can

be written as

L(x,y) =
n

∑
i=1

(fi(xi)+ y>Aixi− (1/n)y>b). (2.8)

Consequently, the x-minimization step in dual ascent in Eq. (2.6) can be solved independently

and in parallel for each i = 1 . . .n

xk+1
i = argmin

xi

Li(xi,yk) (2.9)

yk+1 = yk + α
k(Axk+1−b), (2.10)

where Li = fi(xi)+ y>Aixi− (1/n)y>b.

2.3 Method of multipliers

The convergence properties of dual ascent can be improved by introducing the augmented

Lagrangian function (Boyd et al., 2010)

Lρ(x,y) = f (x)+ y>(Ax−b)+(ρ/2)‖Ax−b‖2
2 , (2.11)

3

where ρ > 0 is a penalty parameter. Thanks to the quadratic penalty, assumptions such as

finiteness and strict convexity of f are not required. When dual ascent is applied to the

augmented problem with ρ as the step size, we obtain the method of multipliers

xk+1 = argmin
x

L(x,yk) (2.12)

yk+1 = yk + ρ(Axk+1−b). (2.13)

The choice of ρ as the step size is motivated by the first-order optimality condition (Boyd et al.,

2010)

∇xLρ(xk+1,yk) = ∇x f (xk+1)+ A>(yk + ρ(Axk+1−b)) (2.14)

= ∇x f (xk+1)+ A>yk+1 = 0. (2.15)

3 Alternating direction method of multipliers

Consider the optimization of two variables with a separable objective function

minimize
x,z

f (x)+ g(z)

subject to Ax + Bz = c,
(3.1)

with f and g convex, x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. The augmented

Lagrangian of this problem with penalty parameter ρ is

Lρ(x,z,y) = f (x)+ g(z)+ y>(Ax + Bz− c)+(ρ/2)‖Ax + Bz− c‖2
2 . (3.2)

The method of multipliers for this problem is

(xk+1,zk+1) = argmin
x,z

L(x,z,yk) (3.3)

yk+1 = yk + ρ(Axk+1 + Bzk+1− c). (3.4)

Because of the quadratic penalty term (ρ/2)‖Ax + Bz− c‖2
2 and joint minimization of x and

z, the separability of the objective function cannot be exploited (Boyd et al., 2010). ADMM

4

addresses this issue by introducing the iterations

xk+1 = argmin
x

L(x,zk,yk) (3.5)

zk+1 = argmin
z

L(xk+1,z,yk) (3.6)

yk+1 = yk + ρ(Axk+1 + Bzk+1− c). (3.7)

The algorithm can be written in a slightly different form by defining the residual r = Ax +

Bz−c and a scaled dual variable u = (1/ρ)y. Using these variables, the augmented Lagrangian

becomes

Lρ(x,z,y) = f (x)+ g(z)+ y>r +(ρ/2)‖r‖2
2 (3.8)

= f (x)+ g(z)+(ρ/2)‖r +(1/ρ)y‖2
2− (1/2ρ)‖y‖2

2 (3.9)

= f (x)+ g(z)+(ρ/2)‖r + u‖2
2− (ρ/2)‖u‖2

2 (3.10)

= Lρ(x,z,u). (3.11)

By ignoring the last term of Lρ(x,z,u) as a constant, the iterations become

xk+1 = argmin
x

(
f (x)+(ρ/2)

∥∥∥Ax + Bzk− c + uk
∥∥∥2

2

)
(3.12)

zk+1 = argmin
z

(
g(z)+(ρ/2)

∥∥∥Axk+1 + Bz− c + uk
∥∥∥2

2

)
(3.13)

uk+1 = uk + Axk+1 + Bz− c. (3.14)

Boyd et al. (2010) shows the convergence of the algorithm in case of two convex functions,

Hong and Luo (2013) for any number of functions, and Ghadimi et al. (2015) analyzes optimal

penalty parameter selection for quadratic problems, for example. The necessary and sufficient

optimality conditions for the problem (3.1) are primal feasibility

Ax∗+ Bz∗− c = 0, (3.15)

and dual feasibility

∇ f (x∗)+ A>y∗ = 0 (3.16)

∇g(z∗)+ B>y∗ = 0. (3.17)

5

Primal feasibility motivates the stopping criteria
∥∥rk
∥∥2

2 ≤ εpri, where εpri is a small positive

constant. Because xk+1 minimizes Lρ(x,zk,yk), we have

0 = ∇ f (xk+1)+ A>
(

yk + ρ(Axk+1 + Bzk− c)
)

(3.18)

= ∇ f (xk+1)+ A>
(

yk + ρrk+1 + ρ(Bzk−Bzk+1)
)

(3.19)

= ∇ f (xk+1)+ A>yk+1−ρA>B(zk+1− zk). (3.20)

Thus, the quantity sk = ρA>B(zk+1− zk) can be interpreted as dual residual, which gives the

second stopping criteria
∥∥sk
∥∥2

2 ≤ εdual.

3.1 Proximal operators

A useful reformulation of the ADMM algorithm can be stated by using proximal operators.

Following Parikh and Boyd (2013), the proximal operator proxρ f : Rn→ Rn of a scaled convex

function ρ f : Rn→ R∪{∞} evaluated at point v ∈ Rn with ρ > 0 is defined by

proxρ f (v) = argmin
x

(
f (x)+

1
2ρ
‖x− v‖2

2

)
. (3.21)

The function minimized on the right hand side is strictly convex, and, thus, it has a unique

minimizer. The parameter ρ represents a trade-off between minimizing f and being near to v.

For example, when f is the indicator function

IC(x) =


0 if x ∈C

∞ if x 6∈C,

where C is a closed nonempty convex set, the proximal operator of f reduces to

prox f (v) = argmin
x∈C

‖x− v‖2 , (3.22)

which is the Euclidean projection of v onto a set C denoted by ΠC(v).

Consider the problem (see problem (3.1))

minimize f (x)+ g(z)

subject to x− z = 0,
(3.23)

6

which is called the consensus form (Parikh and Boyd, 2013). Using the proximal operator, the

ADMM iterations in Eqs. (3.12)-(3.14) with the scaled dual variable u become

xk+1 = proxρ f (zk−uk) (3.24)

zk+1 = proxρg(xk+1 + uk) (3.25)

uk+1 = uk + xk+1− zk+1. (3.26)

Note that in Eq. (3.25) the signs of the arguments were changed thanks to the quadratic term.

Following Parikh and Boyd (2013), an exchange problem of the form

minimize
N

∑
i=1

fi(xi)

subject to
N

∑
i=1

xi = 0,

(3.27)

with xi ∈ Rn, i = 1, . . . ,N can be rewritten in the above consensus form

minimize
N

∑
i=1

fi(xi)+ IC(x1, . . . ,xN), (3.28)

where C = {(x1, . . . ,xN)∈RnN |x1 + · · ·+xN = 0}. The z-update in Eq. (3.25), i.e., the projection

of xk+1 + uk onto C can be computed analytically and is given by de-meaning

(ΠC(xk+1
1 + uk, ...,xk+1

N + uk))i = xk+1
i + uk− x̄k+1− ūk = xk+1

i − x̄k+1. (3.29)

Thus, the iterations in Eqs. (3.24)-(3.26) for this problem reduce to

xk+1
i = proxρ fi(xk

i − x̄k−uk) (3.30)

uk+1 = uk + x̄k+1, (3.31)

where the x-update can be carried out independently and in parallel for each i = 1 . . .N.

4 Exchange problem in an electrical power system

Kraning et al. (2013) develops an energy management model for a large-scale electrical power

network using the proximal formulation of ADMM. The model minimizes the cost functions

7

of devices such as generators subject to fixed and curtailable loads, transmission constraints

and many other details, while maintaining the power balance in subsets of the whole network

called nets. The problem is solved in a distributed manner by alternating between the parallel

optimization of single device objective functions and computing average power imbalances in

the nets which the devices belong to. They implement the parallel optimization of the device

objective functions in OpenMP with 64 threads, whereas the net imbalances are computed

serially because the overhead from spawning the threads overcomes that of computing the

averages. They note that, in theory, the solution time can be expected to be constant if the

number of threads matches the number of devices.

We present a very simple network which is partitioned to nets which contain a number

of unconstrained generators and fixed loads. The nets are connected through unconstrained

direct current (DC) tranmission lines. An object such as a generator is represented by a power

schedule pd which is a scalar for single terminal devices (generators and loads) and a vector

for multiterminal devices (transmission lines). The elements of pd, denoted by pt , are positive

if the terminal is a source of power and negative if the terminal is a sink. The problem is

implemented in MPI, which supports the distributed memory framework, where every process

has its own private memory and the sharing of private information is done through message

passing. The problem is as follows

minimize f (p)

subject to p̄ = 0,
(4.1)

where p is the vector of all power schedules in the network, and p̄ = 1
T

T
∑

t=1
pt the average power

schedule over all terminals t. For terminals, we define p̄t = 1
|n| ∑

t ′∈n
pt ′ , where t ∈ n and |n| is the

number of terminals in net n. Following Kraning et al. (2013), the notation is overloaded for

devices and nets by defining p̄d = {p̄t | t ∈ d} and p̄n = {p̄d |d ∈ n}, respectively. Effectively, p̄n

contains |n| copies of p̄t for net n. The objective function is separable as each device has its own

cost function. Moreover, the whole network is in balance only if all of its nets are in balance.

8

Consequently, the problem can reformulated as

minimize
D

∑
d=1

fd(pd)+
N

∑
n=1

gn(zn)

subject to p = z,

(4.2)

where pd is the power schedule of a device d, fd its cost function, zn the vector of power schedules

pd in the net n, i.e., zn = {pd |d ∈ n}, and gn(zn) is the indicator function on the set {zn | z̄n = 0}.

Similarly, we define zd to be the part of p pertaining to device d. The augmented Lagrangian

of the problem is

Lρ(x,z,u) =
D

∑
d=1

fd(pd)+
N

∑
n=1

gn(zn)+(ρ/2)‖p− z + u‖2
2 (4.3)

The quadratic penalty term can be split across devices or nets

‖p− z + u‖2
2 =

D

∑
d=1
‖pd− zd + ud‖2

2 =
N

∑
n=1
‖pn− zn + un‖2

2 (4.4)

Consequently, we can write the ADMM iterations as follows

pk+1
d = proxρ fd (pk

d− p̄k
d−uk

d) (4.5)

uk+1
n = uk

n + p̄k+1
n , (4.6)

where ud and un include the elements of the scaled dual vector u pertaining to the device d and

net n, respectively. The z-update, which equals to the one in Eq. (3.29), has been plugged in

to the iterations.

In practice, the power schedules of the fixed loads remain unchanged so they need not be

updated but only initialised once. For a generator i, we set a fixed generation cost ci, which

allows the proximal operator in Eq. (4.5) to be computed analytically. On the other hand,

transmission line j with terminal power schedules pt, j1 and pt, j2 has no cost function, and,

thus, the step (4.5) reduces to a projection onto a hyperplane pt, j1 + pt, j2 = 0, which implies

zero losses on the line. We limit ourselves to unconstrained generators and transmission lines as

they allow us to solve all equations analytically without a need for additional software libraries.

9

Figure 1: Nets and transmission lines in the sample network

5 Receding horizon control under load imbalances

Receding horizon control (RHC) is a feedback control technique, where an optimization problem

is solved at each time step to determine the control input for a fixed time horizon (Mattingley

et al., 2011). The optimization takes into account real-time measurements and estimates of

future quantities based on them. With RHC, tedious tuning of a controller such as PID is not

required.

We solve initial power schedules for T = 60 seconds based on an estimate of the fixed loads

in a power network in Figure 1. There is no temporal connection between consecutive seconds

but the optimization is repeated T times with fixed load schedules varying in time. There are

25 nets, which each contains maximum 2 loads, maximum 2 generators and a connection to a

random net. There are no duplicate transmission lines.

A sample problem has a total of 156 nets and terminals of which each is assigned an in-

10

dependent MPI process. The implementation is summarized in Algorithm 1. First, the power

schedules for the fixed loads are initialised. Then, the main ADMM loop is entered, where

parallel runs alternate between the devices and nets at steps 5.1. and 5.3. After a net has

completed updating its average imbalance and the dual variable, the results are communicated

to its devices using MPI Bcast (step 5.1.4.). If all nets have imbalance less than a threshold

value εpri, the loop is discontinued and the current power schedules are returned. Otherwise,

each device uses the imbalance and dual variable of its net to optimize its power schedule. The

updated power schedules of each device in a net are gathered and sent to the net using MPI

Reduce (step 5.1.1.). For our sample network, the initial power schedules were determined in

132 iterations and 22 milliseconds. By comparison, on a four core Intel Core i5 CPU clocking

at 2.40 GHz the optimization takes around 5 seconds.

We test a simple RHC controller by introducing load imbalances during each second which

are modelled with the following simple process for a load l

imbl,τ =−b−wτ τ = 1 . . .T ,wτ ∼ Unif[−a,a], (5.1)

where a and b are constants. The load terminals are assumed to know the functional form of

the imbalances but not the parameters. As the expected value of imbl,τ is b, each load terminal

updates its estimate for future imbalances by averaging previously observed imbalances

ˆimbl =
1
τ

τ

∑
τ ′

imbl,τ ′. (5.2)

Such a learning process may happen in real power networks, when load is continously lower

than forecasted because of higher temperature, for example, but the observations are noisy.

Every second, the current load imbalance is observed and the estimate of future imbalances

updated. The RHC controller optimizes generation for the current second and T ′ = 5 seconds

ahead using Algorithm 1. Solving each of these optimization problems took approximately 5

ms for the sample problem, i.e., an optimized controller could be implemented at a kilohertz

sampling rate for a large scale network. On the four core system, each RHC run takes 1-2

seconds. The algorithm benefits from a warm start provided by the initial schedules and con-

11

Algorithm 1: Algorithm for obtaining initial power schedules

1. Initialise a MPI process for each net and terminal

2. Read fixed loads, generation cost parameters and transmission line incidence from input

files

3. Initialise pd for fixed loads

4. For each τ ∈T repeat

5. Do while iteration < maximum iteration

5.1. For each n do in parallel

5.1.1. MPI Reduce pk
d from devices to their nets

5.1.2. Compute p̄k+1
n

5.1.3. Update uk+1
n using (4.6)

5.1.4. MPI Bcast p̄k+1
n and uk+1

n from nets to their devices

5.2. Exit if p̄d < εpri for all n

5.3. For each d do in parallel

5.3.1. Update pk+1
d using (4.5)

12

Figure 2: Running times using a quad-core PC

tinuous updates of the load imbalance as the average number of iterations drops approximately

to 95.

More detailed solution time results are in Figures 2 and 3 for the quad-core PC and a cluster,

respectively. For the PC, solution times seem to grow fast, when the number of required

processes increases. This can result from the increasing overhead of spawning the threads,

reading input files and scheduling the different processes when there are only four cores available.

However, the solution times stay nearly the same when the cluster is used. Small differences

can be caused by different CPUs being allocated for different runs and the computational load

of the cluster. Moreover, Figure 4 shows how the number of iterations grows for a problem

with a total of 48 nodes and devices using the quad-core PC. The iterations could be reduced

slightly by finetuning the step size parameter ρ as Figure 5 shows.

13

Figure 3: Running times using a cluster

Figure 4: Number of iterations for a problem of 48 processes with different stopping criteria

14

Figure 5: Solution times with different values of ρ for a problem with 48 processes with εpri = 10−5

15

6 Conclusion

In this study, a distributed optimization algorithm called alternating direction method of multi-

pliers was presented. The algorithm was applied to a small energy management problem, which

was fully parallelized. Nearly constant solve time was observed when the number of processes

increased with the number of devices and nets.

The model could be extended by adding more features to the network objects. For example,

generators and transmission lines have a constrained operating interval. Moreover, additional

objects such as alternating current (AC) transmission lines and flexible loads could be intro-

duced similar to Kraning et al. (2013). However, the simple model presented in this study could

be utilized in power market simulations, in situations in which low level of detail suffices.

On the other hand, the implementation could be developed to utilize GPUs through NVIDIA

CUDA, for example, as GPUs have a larger number of threads than CPUs. Although GPU

threads have less computing power, only a small difference can be expected because each device

and net solves a relatively simple optimization problem that would not benefit from access to

more computing capacity.

References

Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Parallel and Distributed Computation: Numerical

Methods. Prentice-Hall, Upper Saddle River, New Jersey.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2010). Distributed optimization

and statistical learning via the alternating direction method of multipliers. Foundations and

Trends in Machine Learning, 3(1):1–122.

Chakrabarti, S., Kraning, M., Chu, E., Baldick, R., and Boyd, S. (2014). Security constrained

16

optimal power flow via proximal message passing. In Proceedings of the Power Systems

Conference (PSC), 2014 Clemson University, pages 1–8.

Chen, C., Ng, M., and Zhao, X.-L. (2015). Alternating direction method of multipliers for

nonlinear image restoration problems. IEEE Transactions on Image Processing, 24(1):33–43.

Erseghe, T. (2014). Distributed optimal power flow using ADMM. IEEE Transactions on

Power Systems, 29(5):2370–2380.

Ghadimi, E., Teixeira, A., Shames, I., and Johansson, M. (2015). Optimal parameter selection

for the alternating direction method of multipliers (ADMM): Quadratic problems. IEEE

Transactions on Automatic Control, 60(3):644–658.

Hong, M. and Luo, Z.-Q. (2013). On the linear convergence of the alternating direction method

of multipliers. http://arxiv.org/abs/1208.3922v3. Accessed 26 March 2015.

Kraning, M., Chu, E., Lavaei, J., and Boyd, S. (2013). Dynamic network energy management

via proximal message passing. Foundations and Trends in Optimization, 1(2):70–122.

Leinonen, M., Codreanu, M., and Juntti, M. (2013). Distributed joint resource and routing

optimization in wireless sensor networks via alternating direction method of multipliers. IEEE

Transactions on Wireless Communications, 12(11):5454–5467.

Lubell-Doughtie, P. and Sondag, J. (2013). Practical distributed classification using the alter-

nating direction method of multipliers algorithm. In Proceedings of 2013 IEEE International

Conference on Big Data, pages 773–776.

Mattingley, J. and Boyd, S. (2015). CVXGEN: Code generation for convex optimization.

http://cvxgen.com. Accessed 31 March 2015.

Mattingley, J., Wang, Y., and Boyd, S. (2011). Receding horizon control. Control Systems,

IEEE, 31(3):52–65.

Mota, J., Xavier, J., Aguiar, P., and Puschel, M. (2012). D-ADMM: A distributed algorithm

for compressed sensing and other separable optimization problems. In Proceedings of 2012

17

http://arxiv.org/abs/1208.3922v3
http://cvxgen.com

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

2869–2872.

Parikh, N. and Boyd, S. (2013). Proximal algorithms. Foundations and Trends in Optimization,

1(3):123–231.

Ramani, S. and Fessler, J. (2012). A splitting-based iterative algorithm for accelerated statistical

X-Ray CT reconstruction. IEEE Transactions on Medical Imaging, 31(3):677–688.

18

	Introduction
	Preliminaries
	Dual ascent
	Dual decomposition
	Method of multipliers

	Alternating direction method of multipliers
	Proximal operators

	Exchange problem in an electrical power system
	Receding horizon control under load imbalances
	Conclusion

