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1 Introduction

This work studies the location problem of several samples of multivariate
data. The purpose is to find a test statistic that can be applied even though
the common normality assumptions of multivariate data sets would not hold
or the sample sizes are small. Therefore, in addition to the classical multivari-
ate analysis of variance MANOVA, test statistics based on non-parametric
score functions known as spatial signs and spatial ranks are considered. The
different test statistics are compared using simulated data-sets. The theory
is mainly based on the book by Oja [2010] and the focus is on its chapter 11.

The practical frame of reference of this work is to evaluate changes in the
quality of a complex process. The process considered in this work is pro-
ducing energy in a hydro-power cascade. The data of the process is not
necessarily normally distributed but can be heavily tailed, due to the nature
of the process and due to some technical limitations. The problem of selec-
tion and preprocessing of relevant data is discussed shortly utilizing a few
simple examples.

As a conclusion of this work, the use of the non-parametric methods are found
useful in some cases. Especially the test based on the spatial ranks offers an
alternative to the classical MANOVA in the situations where the multinor-
mality assumptions do not exactly hold or the sample sizes are small. The
test based on spatial signs was found to be the most robust one, which may
lead to losing relevant information regarding to the problem. Still, general
rules of application cannot be provided. One drawback of the non-parametric
methods presented is that the test statistics are not affine invariant. How-
ever, they are location invariant and scalar invariant which is sufficient in
numerous practical applications.
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2 Notations and definitions of key concepts

Affine map The mapping f : Rn → Rn is called affine if and only if

f(Ax + b) = Af(x) + b, ∀A ∈ Rn×n, ∀b ∈ Rn

The linear mapping (b = 0) is a special case of affine mapping.
d−→ The sequence of random variables X1, . . . , Xn converges in distribution

to a random variable X, denoted by Xn
d−→ X, if and only if their

cumulative distribution functions satisfy the following:

lim
n→∞

F (Xn) = F (X)

The definition is based on distributions only, and hence, the sample
spaces of Xi do not necessarily need to be the same.

p−→ The sequence of random variables X1, . . . , Xn defined in the same sample
space converges in probability to a random variable X, denoted by
Xn

p−→ X, if and only if they satisfy the following ∀ ε > 0:

lim
n→∞

Pr(|Xn −X| > ε) = 0

COV The covariance matrix, COV(y) := E[(y − E[y])(y − E[y])T ]

FX The cumulative distribution function (cdf) of a random variable X de-
termines the probability of the variable X being less than a real number
x. More formally, for a p-variate random variable X, F : Rp → [0, 1] is
its cdf if and only if FX(x) = Pr(X < x). Note, FX totally determines
the random variable X.

X Data matrix of p-variate observations has the dimensions (n× p). If the
data contains samples of sizes n1, . . . , nc, then n = n1 + · · · + nc. For
more information, see the chapter 4.

:= is a notation to separate definition from "equals", denoted by "=". I.e.
consider the difference between the definition of a new variable a := bc

and the strict equality 1 = 1.

ν Calculating a statistic, the degrees of freedom, denoted commonly as ν,
determines the number of values that are free to vary.

In, I The diagonal elements of (n× n)-sized identity matrix equal one, all
the others are zero. In case n is obvious, it might be omitted.
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p-value relates to statistical tests. It is the probability that the test statistic
applied would obtain similar or more extreme results under the assump-
tion of the null hypothesis. Thus, small probabilities give evidence to
reject the null hypothesis.

T (x) Score function maps the observations into scores that are utilized in
analysis.

µ(X) Spatial median generalizes the concept of median in a multivariate
case, see the definition 4.3.

U(x) Spatial sign function is one example of a score function, see the defi-
nition 4.1.

R(X) Spatial rank function is one example of a score function, see the
definition 4.2.

tr(A) Trace of a (n× n)-matrix A is the sum of its diagonal elements.

AT Transpose of the matrix A.

1n, 1 is a vector of ones of length n. In case n is obvious, it might be
omitted.

3 Multivariate Location

Assume that we have a p-variate random variable x ∈ M(p), where M(p)
denotes the set of p-vectors. The cumulative distribution function of x is
Fx that is characterized by the location parameter µ and scatter parameter
Ω. We have n observations x1, x2, . . . , xn from that distribution. These
independent observations form the sample data matrix X = [x1, . . . ,xn]T ∈
M(n, p), whereM(n, p) is the set of (n× p)-matrices.

Whenever working with sets of data, the interesting questions are: Where is
the data? How is it scattered around its location? In this work the focus is on
the first question. To relate with it, the definitions of the location functional
and its statistic are given in 3.1 and 3.2, respectively.
Definition 3.1. Location functional:
If a (p× 1)-vector-valued functional M(Fx) is affine equivariant in the sense
that

M(FAx+b) = AM(Fx) + b

for any non-singular A ∈ Rp×p and for any b ∈ Rp, then it is called a location
functional.
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Definition 3.2. Location statistic:
The functional M : Rn×p → Rp is a location statistic if for any non-singular
A ∈ Rp×p and for any b ∈ Rp the functional is affine equivariant in the
following sense:

M(XAT + 1bT ) = AM(X) + b

One practical consequence of them being affine equivariant is that for ex-
ample unit conversions can be applied either to the data or to the location
statistic, yielding the same results in either case. To provide examples, a
common location functional is the mathematical expectation vector E(X)
whereas the sample mean vector M(X) := X̄ := XT1/N is a location statis-
tic satisfying the definition 3.2:

M(XAT + 1bT ) := (XAT + 1bT )T1/N

= AXT1/N + b1T1/N = AM(X) + b

However, in practise the sample mean X̄ may be quite sensitive in presence
of outlying observations. For instance, consider a group of 20 workers with
monthly salaries of 2000e (10 workers), 3000e(9 workers) and 100 000e
(1 boss). Certainly the least paid workers would not be happy with the
annual report declaring that the average salary in the firm exceeds 7000e
per worker1. In practise, the outliers can be found and removed during
the analysis but it gets more difficult as the number of dimensions grows.
Going further with the given example, consider another firm of the same size
having salaries distributed between 7000e-7700e, yielding the same mean
than before. Are the locations of the two datasets equal? This question,
though in multivariate case, is discussed in this work.

4 Several Sample Location Problem

In this section, several sample location problem is studied. After agreeing on
the notations of the data, the use of the score functions is discussed. Then,
the general idea of testing for the location difference is presented. In the end,
this general strategy is applied to different score functions.

Let the p−vector xij denote a single independent observation that is drawn
from the distribution Fi. The distribution is characterized by a location

1Instead, they might say that the boss is a mean guy
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parameter µi and a scatter parameter Ω. These observation vectors form c
independent random samples:

Xi =

xTi1
...

xTini

 ∈ Rni×p, i = 1, . . . , c

Hence, the data matrix X can be constructed using the samples. The total
number of observations is the sum of the sample sizes: n = n1 + · · ·+ nc.

X =

X1
...
Xc

 ∈M(n, p)

Note that using Xij means the jth observation from the sample i. In other
words it is the row number n1 + · · ·+ ni + j, not the element in the position
X(i, j).

The main question is whether the centers µi of the p-variate samples 1, . . . , c
are equal or not. This can be formalized as a null-hypothesis:

H0 : µ1 = · · · = µc (1)

As we assumed that for all the cumulative distribution functions Fi the scat-
ter parameter is Ω, the equivalent form of the null-hypothesis would be:

H0 : F1 = · · · = Fc (2)

This assumption contradicts with the general problem lying behind this work
and will be discussed more thoroughly later on.

4.1 Score functions

In general, score functions T : Rp → Rp are used to construct tests and
estimates for the location parameter µ. Three different score functions are
discussed. The first one is the identity score T(x) = x, which will eventually
lead to classical multivariate analysis of variance (MANOVA). After that, the
multivariate concepts of spatial signs and spatial ranks are applied. Their
functional definitions are given in 4.1 and 4.2, respectively.
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Definition 4.1. Spatial sign function:
The spatial sign function U(x) : Rp → Rp is a direction vector lying on the
unit p-sphere, namely

U(x) =

{
|x|−1x, x 6= 0

0, x = 0,

where | <> | stands for the usual L2-norm (euclidean). For a (n× p)-matrix
X =

[
x1 · · · xn

]T , where xi ∈ Rp×1, the function U(X) : Rn×p → Rn×p is
defined as follows:

U(X) =

U(x1)
T

...
U(xn)T


Definition 4.2. Spatial rank function:
The spatial rank function R(X) : Rn×p → Rn×p is a relative measure of
direction and distance from the center of the data, defined as

R(X) =
1

n

n∑
i=1

U(X−

x
T
i
...
xTi

)

The spatial ranks lie in the unit p-ball.

As the spatial rank is a relative measure, it is always 0 for only one observa-
tion because the one always is relatively at the center. Therefore the spatial
rank function is defined for the data matrix. To clarify these concepts, see
the figure 1 representing two tailed data sets and corresponding spatial sign
and rank functions.

The scores are often centered and/or standardized to perform different tests,
or to attain different estimates. One can use either outer or inner procedure.
Note that T := [T1, . . . ,Tn]T := [T(x1), . . . ,T(xn)]T and that average is
denoted as "bar": T̄ = 1

n

∑n
i=1Ti.

1. Outer procedure

(a) Outer centering of the scores:

Ti → T̂i = Ti − T̄

(b) Outer standardization of the scores:

Ti → T̂i = COV(T)−1/2Ti
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Figure 1: Two bivariate random data samples of 30 and 40 observations.
The theoretical locations of the samples are different and both samples in-
clude outliers. The corresponding spatial signs and ranks calculated in the
smaller figures. The spatial signs show the direction of the observation on the
p-sphere whereas the spatial ranks is a relative measure so that all the ob-
servations are inside the p-sphere. In this case p = 2 and hence the p-sphere
is a circle.
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(c) The combination of the two:

Ti → T̂i = COV(T)−1/2(Ti − T̄)

2. Inner procedure

(a) Inner centering of the scores:

Ti → T̂i = T(yi −M)

that must yield the 0 ∈ Rp as an average:

1

n

n∑
i=1

T̂i = 0

(b) Inner standardization of the scores:

Ti → T̂i = T(S−1/2yi)

that must satisfy

p ·
n∑
i=1

T̂iT̂
T
i = Ip

n∑
i=1

T̂T
i T̂i

(c) Inner centering and standardization combines the two and both
of the requirements must be satisfied:

Ti → T̂i = T(S−1/2(yi −M))

In the case of the spatial sign, an example of the M to fulfill the condition
of the inner centering is the spatial median, defined in 4.3.
Definition 4.3. Spatial median:
The spatial median µ ∈ Rp of the data matrix X ∈ Rn×p minimizes the
L1-difference from it, namely:

µ = arg min
µ∈Rp

n∑
i=1

|Xi − µT |
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One way to obtain the spatial median is the Weiszfeld-method whose iteration
step is given in the equation 3. (Kärkkäinen and Äyrämö [2005])

uk+1 =

{∑n
i=1 xi/|uk−xi|∑n
i=1 1/|uk−xi| , uk 6∈ {x1, . . . ,xn}

uk
(3)

As the given method fails to converge at times, an other method is used.
Gervini [2008] provides a method to evaluate spatial median for the functional
data analysis purposes. That method can be applied to this problem by
setting the dimensions of a multivariate data set as a time axis with constant
discretization. Smoothing along the time-axis is not allowed. The result is
then spatial median of all the dimensions. The author of the article provides
the Matlab-functions2 and they are utilized in this work.

4.2 General strategy

In this section the test statistic is derived using inner centering and outer
standardization. The first step is to find a shift vector M such that

1

c

c∑
i=1

1

ni

ni∑
j=1

T(yij −M) = 0 ∈ Rp

Then the centered score function are defined as

T̂ij = T(xij −M), i = 1, . . . , c; j = 1, . . . , ni.

Next, the group means are calculated:

T̂i =
1

ni

ni∑
j=1

T̂ij, i = 1, . . . , c.

Assume that the general score function T̂ij is centered and, by the Central
Limit theorem that

√
ni

1

ni

ni∑
j=1

T̂ij =
√
niT̂i

d−→ Np(0,B)

2https://pantherfile.uwm.edu/gervini/www/RFDA.html , accessed 11.5.2015

https://pantherfile.uwm.edu/gervini/www/RFDA.html
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where (p × p)-covariance matrix B is defined as B := E(T̂ijT̂
T
ij). Then,

√
niB

−1/2T̂i
d−→ Np(0, I). This is proven in the general case below:

Statement: For any B1/2 := A that accomplishes AAT = B, the following
holds: y ∼ Np(0,B)⇒ B−1/2y ∼ Np(0, I).

Proof: Firstly, any linear combination of multivariate normal random vari-
able is normally distributed. Secondly, the expectation parameter of this new
normally distributed variable is:

E(B−1/2y) = B−1/2E(y) = B−1/20 = 0

Thirdly, the covariance matrix of the new variable is, recalling that covariance
is an affine equivariant operator:

COV(B−1/2y) = B−1/2COV(y)(B−1/2)T = B−1/2B(B−1/2)T

= B−1/2B1/2(B1/2)T (B−1/2)T = B−1/2B1/2(B−1/2B1/2)T = I

Next, we define an estimator for B, that is B̂ := 1
n

∑c
i=1

∑ni

j=1 T̂ijT̂
T
ij ∈ Rp×p

which converges in probability to B. Then, basing on the earlier proof, Ĉi :=
√
niB̂

−1/2T̂i
d−→ Np(0, I) as well.

If Ĉi
d−→ Np(0, I), then, by the definition of Chi-squared random variable,

ĈT
i Ĉi

d−→ χ2(p).

Now, our test statistic to test whether the location of the samples differ or
not, can be formed as a sum of Chi-squared random variables, as presented
in the equation 4. In general, the sum of independent Chi-squared random
variables follows Chi-squared distribution with degrees of freedom obtained
by summing the degrees of freedom of all the independent variables3. How-
ever p degrees of freedom are lost as the covariance matrix of group means

3 Proof: Recall that the moment generating function of a random variable X, defined
as MX(t) = E[etX ], if it exists, uniquely determines its distribution. For X ∼ χ2(ν)

MX(t) = (1− 2t)−ν/2, t >
1

2

Given random variables X1, . . . , Xn such that Xi ∼ χ2(νi) ∀i = 1, . . . , n. The random
variable Y is then defined as the sum of the previous ones, namely Y = X1 + · · · + Xn.
Its moment generating function is, by the definition and by applying simple calculus:

MY (t) = E[etY ] = E[et(X1+···+Xn)] = E[etX1 × · · · × etXn ]

= E[etX1 ]× · · · × E[etXn ] =

n∏
i=1

MXi
(t)
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T̂i =
∑ni

j=1 T̂ij of the centered scores would not be invertible. An intuitive
explanation is that the same data cannot be used to estimate both the covari-
ance and its expectation parameter. Hence, only c− 1 groups can contribute
to the degrees of freedom (for details, see e.g. [Oja, 2010, p. 151]). The test
statistic gets the following form:

Q2(X) = ĈT
1 Ĉ1 + · · ·+ ĈT

c Ĉc
d−→
H0

χ2((c− 1)p) (4)

As the null hypothesis (see the equation 1) assumed that all the centers would
be the same, then large values of the test statistic give evidence against it.
Using the test statistic derived above, p-value can be attained by:

p = Pr(χ2
(c−1)p > Q2(X)) = 1− Pr(χ2

(c−1)p ≤ Q2(X))

= 1− Fχ2
(c−1)p

(Q2(X))

In the end, the test statistic of the equation 4 is derived into a clearer form:

ĈT
i Ĉi = (

√
niB̂

−1/2T̂i)
T (
√
niB̂

−1/2T̂i)

= niT̂
T
i (B̂−1/2)T B̂−1/2T̂i = T̂T

i B̂
−1T̂i

Eventually the test statistic is (5):

Q2(X) =
c∑
i=1

niT̂
t
iB̂
−1T̂i

d−→
H0

χ2((c− 1)p) (5)

4.2.1 Multivariate analysis of variance (MANOVA)

Multivariate analysis of variance (MANOVA) generalizes the univariate anal-
ysis of variance (ANOVA) which tests the null-hypothesis of the equal means
of different groups. MANOVA is achieved using the general strategy pre-
sented earlier by choosing the identity score function T(xij) = xij. Then,
the sample mean is denoted by

As the moment generating functions of Xi are known, the derivation continues as:
MY (t) = (1− 2t)−ν1/2 × · · · × (1− 2t)−νn/2 = (1− 2t)−(ν1+···+νn)/2

Hence, Y ∼ χ2(ν1 + · · ·+ νn)
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x̄i :=
1

ni

ni∑
j=1

xij, i = 1, . . . , c

and for the total mean

x̄ :=
1

c

c∑
i=1

x̄i.

The first step of the general strategy is the centering. Inner and outer cen-
tered scores are attained by choosing the shift vector M to be the total mean
vector x̄:

T̂ij := T̂(xij) = xij − x̄, i = 1, . . . , c; j = 1, . . . , ni.

The test statistic is then based on

T̂i :=
1

ni

ni∑
j=1

T̂ij =
1

ni

ni∑
j=1

(xij − x̄)

= x̄i − x̄, i = 1, . . . , c.

Hence, the test statistic is given in the equation 6. Under the null hypothesis
H0 the limiting distribution of Q2(X) is, as derived earlier, χ2((c − 1)p).
Note that the scores are bot inner and outer centered and that the sample
covariance matrix B̂ := 1

n

∑c
i=1

∑ni

j=1(xij− x̄)(xij− x̄)T fulfills the conditions
of both outer and inner standardization. Therefore the test statistic is affine
invariant, say Q2(XHT +1nb

T ) = Q2(X), where H is full-rank (p×p) matrix
and b ∈ Rp.

Q2(X) :=
c∑
i=1

(niT̂
t
iB̂
−1T̂i) =

c∑
i=1

(ni(x̄i − x̄)tB̂−1(x̄i − x̄)) (6)

In practise it might be easier to relate a single observation to a group and
store that information. Based on this idea, another useful formulation of
MANOVA [Oja, 2010, pp. 148-149] utilizes a sample membership matrix
M ∈ Rn×c which is defined in the equation 7. Often both the data and
the sample membership matrices are available. This method is based on the
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decomposition of sums of squares SST = SSB +SSW meaning that the total
error is the sum of the errors between the groups and the errors within the
groups. Many test statistics have been derived for this purpose, and two
of them are Q2

P = n · tr(SSBSS2
T ) (Pillai) and Q2

LH = n · tr(SSBSS−1W )
(Lawley-Hotelling).

Mij =

{
1, the ith observation belongs to the jth sample
0

(7)

The diagonal element of MTM ∈ Rc×c determine the sample sizes. The ma-
trix MMT ∈ Rn×n might be useful as (MMT )ij equals one if and only if
the observations i and j come from the same sample, otherwise it is zero.
The projection4 PMX := Mn(MT

nMn)−1MT
nX projects the data points to

the subspace spanned by the columns of M. As the columns of M determine
the group of the corresponding row (observation), then that projection re-
places the observations by the sample means – without caring of the order of
the observations. Then, the projection (I − PM)X yields the within-group
differences, namely the observation minus the corresponding sample mean.

In the end, the data matrix is centered with a smart move. The projection
1n(1Tn1n)−11TnX = 1

n
1n1

T
nX replaces all the observationsX by the total mean

vector. Then, the centered scores can be calculated as T̄ = (I − 1
n
1n1

T
n )X,

namely the observations minus the total mean. They satisfy the conditions
of both outer and inner procedure.

Then, all the projections are applied to these centered scores and we get the
decomposition SST = SSB + SSW into the form:

T̄T T̄ = T̄TPMT̄ + T̄T (I−PM)T̄

Then, the Pillai Lawley-Hotelling test statistics can be stated using these
notations and they are presented in the equations 8 and 9. Their distributions
can often be approximated by χ2((c− 1)p) but the exact distribution is not
known. These test statistics are left out from the section 5 but are presented

4If a matrix A ∈ Rr×r satisfies A2 = A (idempotent), then it is called a projection
matrix. In other words, if a point is already projected, then another projection does
not have any effect on it. Moreover, if A is a projection, then is I − A = (I − A)2 =
I− 2A+A2 = I− 2A+A = I−A.
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here as a curiosity.

Q2
P = n · tr(T̄TPMT̄(T̄T T̄)−1) (8)

Q2
LH = n · tr(T̄TPMT̄(T̄T (I−PM)T̄)−1) (9)

4.2.2 The Test Based on Spatial Signs

If the spatial sign function is used as the score function, the inner centered
scores are obtained using the spatial median vector µ̂ as the shift vector M:

Ûij := Û(xij) = xij − µ̂, i = 1, . . . , c; j = 1, . . . , ni.

The test statistic for testing for the difference between the groups is then
based on:

Ûi :=
1

ni

ni∑
i=1

Ûij, i = 1, . . . , c

Hence, the test statistic is given in the equation 10 and its limiting distri-
bution under the null hypothesis (and under some weak assumptions [Oja,
2010, p. 154]) is again χ2((c− 1)p). The test statistic is location and scalar
invariant: Q2(αX + 1nb

T ) = Q2(X), where α ∈ R and b ∈ Rp.

Q2(X) =
c∑
i=1

(niÛ
t
iB̂
−1Ûi) (10)

4.2.3 The Test based on Spatial Ranks

The spatial rank scores

Rij := RX(xij), i = 1, . . . , c; j = 1, . . . , ni.

are already centered. Then the test test statistic for testing the difference
between the groups is based on:
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R̄i :=
1

ni

ni∑
i=1

Rij, i = 1, . . . , c

The test statistic is provided in the equation 11 and its limiting distribution
under the null hypothesis (and under some weak assumptions [Oja, 2010, p.
158]) is again χ2((c− 1)p). The test statistic is location and scalar invariant:
Q2(αX + 1nb

T ) = Q2(X), where α ∈ R and b ∈ Rp.

Q2(X) =
c∑
i=1

(niR̄
t
iB̂
−1R̄i) (11)

5 Results

The aim of this section is to present and compare different properties of the
three test statistics, denoted by A, B and C. The test A is based on the
identity score function (MANOVA), B on the spatial signs and C on the
spatial ranks. Their formal definitions are given in the equations 6, 10 and
11, respectively.

5.1 Simulations with multivariate normally distributed
data with and without anomalies

The idea of an experiment (or a case) is to compare the three different tests A,
B and C. For it, we have c random data samples of sizes ni, i = 1, . . . , c. The
simulated data is drawn from p-variate normal distribution whose location
parameters are µi and scatter parameters Σi. In most cases the scatter
parameter Σ is common for each group. Then, the location parameters are
multiplied by a scale factor b ∈ [0, 1]. The smaller the value of b, the closer to
each other the theoretical parameters are. The probability of rejecting theH0

should increase as the value of b increases. To diminish the random effects,
the simulation is repeated 1000 times for each b. In all the experiments, b gets
100 distinct values. Hence in each experiment there are 100 · 1000 random
samples evaluated.

The case 1 consists of three samples drawn from bivariate normal distribu-
tions with different location parameters. The complete setting is presented
in the table 1 and the results, along with those of the case 2, in the figure
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i Sample size, ni Location, µi Scatter, Σ
1 50

[
−4 −4

]
2I2

2 60
[
0 0

]
2I2

3 70
[
1 1

]
2I2

Table 1: Setting of the case 1: Three samples from bivariate normal distri-
butions whose parameters are given in the table.

i Sample size, ni Location, µi Scatter, Σ
1 80

[
0 0

]
2I2

2 20
[
−4 −4

]
2I2

Table 2: Setting of the case 2: Two samples from bivariate normal distribu-
tions whose parameters are given in the table. Moreover, some outliers are
added so that the tail is into the direction of the negative quarter of R2×2.

3. All the tests A, B and C seem quite similar even though the test B can
be distinguished. The setting of the case 2 (see the table 2) is similar to
that of the case 1 but this time the group sizes are different and about 20
% of the observations are outliers. The outliers do share the same location
parameter with the other observations but the scatter parameter is five times
larger. Moreover, these outliers are transformed into the negative quarter in
order to make the data asymmetrically tailed. One example of the data is
given in the figure 2 whereas the general results are given in the figure 3.
Clearly, the tests A and C do not reject that many null hypotheses after the
contamination of the data.

In the case 3, assume that the location shifts of the groups are into the
direction of the minor principal axis of the covariance matrix of the bivariate
normal distribution. The setting is given in the table 3 and the general
results can be seen in the figure 4. The tests A and C are again quite similar
whereas the test B does not indicate the difference that frequently and hence
can be distinguished in the figure. One example of that is shown in the figure
5 where the p-value of the test B is remarkably larger than those of A and
C.

In the case 4 the tests are applied to four dimensional data and the purpose is
to investigate the effect of unequal group-scatter parameters. The complete
setting of the case 4 is given in the table 4. Note that the only difference
between the case 4a and 4b is the scatter parameter of the largest group,
whose theoretical location parameter is almost in the middle of the smaller
groups. The results are shown in the figure 6. The tests A and C do change
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Figure 2: Case 2: One example of the data with the outliers in the negative
quarter. In this case the scale factor b = 1 and therefore the locations of
the groups differ significantly. According to all the tests, there is a lot of
evidence to reject the null hypothesis H0 as all the p-values were less than
10−4.

i Sample size, ni Location, µi Scatter, Σ
1 20

[
0 0

] [
17.3954 3.4721
3.4721 3.2966

]
2 100

[
0.8465 −3.6346

]
3 20

[
1.6931 −7.2692

]
Table 3: Setting of the case 3: Three samples from bivariate normal distri-
butions whose parameters are given in the table. Note that the covariance
matrices are equal and the location shifts are into the direction of the smaller
eigen-vector of it.



18

Figure 3: Cases 1 and 2: The percentages of rejecting the null hypothesis
H0 in the cases 1 (upper) and 2 (lower). The threshold value of the rejection
was set to p = 0.05.
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Figure 4: Case 3: The percentages of rejecting the null hypothesis H0 in 1000
simulated cases for 100 values of the scale factor b.The threshold value of the
rejection was set to p = 0.05. The test based on spatial signs (B) differs from
the other two remarkably.
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Figure 5: Case 3: An example of simulated data where the spatial sign
test does not indicate location shift. The subscripts of the p-values: A :=
MANOVA, B := Spatial signs and C := Spatial ranks.
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Sample, i Sample size, ni Location, µi Scatter, Σa Scatter, Σb

1 20 [0,0,0,0] 2I4 2I4
2 100 [1,1,2,2] 2I4 4I4
3 20 [2,2,4,5] 2I4 2I4

Table 4: Setting of the case 4 (variations a and b): Samples from 4-variate
normal distribution whose parameters are given in the table.

significantly in the case b whereas the test B remains practically the same in
both cases.
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Figure 6: Cases 4a and 4b: The percentages of rejecting the null hypothesis
H0 in 1000 simulated cases for 100 values of the scale factor b.The threshold
value of the rejection was set to p = 0.05 in both cases.
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5.2 Real Data Application

The practical frame of reference of the work is operational quality of a hydro-
power cascade. The term "operational" means the real and actual actions
related to the production. The concept of operational quality is defined here
vaguely as "the effect of all the operational decisions on all the aspects it
is related to". The principle is that if an operational decision may have an
impact on something, then that cannot be left out from the quality consid-
erations. The main aspects of the quality include recreational values, the
nature (the erosion of the river benches, the security of the dams, water
quality), wearing of the technical components, operational risks and opti-
mality of the production. These aspects are very different by nature. It is,
to some extent, possible to measure the optimality at real time whereas the
recreational values form a qualitative question of customs and is certainly a
matter of opinion. Still, these quantitative values form a remarkable compo-
nent of the quality and the operational decision making as the river is partly
public property and is tightly bound with the lives of the people nearby.

In general, the data of any process is assumed to be in the form of time-
series. However, the tests presented in this work do assume scattered data.
Hence, relevant time-series are selected and preprocessed to form multivariate
samples.

The selection of the data relates to the external factors. For example produc-
tion conditions like seasons, rains and temperature should be nearly identical
in the different samples. However, in practise, the distinction between dif-
ferent production conditions is not that straightforward. For example, the
rains in the upper reaches of the river reach the main channel the next day
or later.

The preprocessing relates to the concept of the quality. Consider, for ex-
ample, that one quality objective would be "keeping the levels of the pools
high". Then, one possible measure of the quality could be the difference
between the minimum level of a day minus the upper restriction. In this
case, the preprocessing would be: find the minimum level of a relevant pe-
riod and calculate the difference to the pool’s upper restriction. But, how is
the minimum defined? The level that is instantaneously visited, or maybe
such minimum level under which the level has been at least half an hour?

How to apply the methods? There are two main ways to conduct the experi-
ments and both of them assumes relevant quality measures. In the first one,
some periods of time are chosen to pose as a reference of satisfactory quality
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according to the a priori -knowledge concerning the process. Then, current
process output samples are compared with the corresponding reference sam-
ple. The difference in the location of the samples indicate a probable change
in process quality. This comparison is conducted using the test statistics
derived in this work. The second way is based on similar periods of time
possessing some interesting differences like changes of technical components,
changes of some core computer systems or changes in operators. Then, these
samples are compared using the test statistics. If the tests indicate change
in the quality, the samples are taken into thorough consideration. So, the
difference is that the first one applies the general knowledge before the tests
whereas the latter needs the deep understanding of the process only if some
quality deviations have been indicated.

The data of the case Real I is summer time data from the years 2012 – 2014.
The reference data is from the years 2012 and 2013 whereas the data under
the investigation consists of random days of the summer 2014. The quality
measure is the one presented earlier, namely the maximum decline in the
level of a pool during a day. The explaining variable is the benefits5 gained
which is measured by the day-average spilling of the water. The data and the
results of the three tests are shown in the figure 7. The p-values pA = 0.0090
and pC = 0.0076 are almost equal and less than a fifth of pB = 0.0628 which
is the only test not rejecting the null hypothesis.

The case Real II consists of winter time data. During the time of ice cover
the changes of downstream levels must be restrained. To provide an example,
the quality measure is the day-maximum difference in the downstream water
level. The results are shown in the figure 8 and again the test B separates
from the others as it is the only one that would reject the null hypothesis
(pB = 0.0348). However, the differences between the p-values are quite small.

6 Discussing the methods and the results

The test based on the identity score is affine invariant whereas the non-
parametric tests are only location and scalar invariant. However, from prac-
tical point of view, it is often sufficient because for example unit conversions
are often only a scalar multiplication and/or a location shift. For example,

5The main benefits of a hydro-power plant are the power and the real-time adjust-
ment/control to balance production-consumption gap in the power grid. The day-average
spilling is not the best possible measure of these benefits but will make a good example in
this work.
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Figure 7: Case Real I: Summertime data from the years 2012 and 2013 form
the sample 1 whereas the sample 2 consists of random days from the summer
2014. The y-axis is the maximum decline in the pool’s level during the day
and the x-axis is a measure of benefits, roughly approximated by the average
spilling of the water through the plant. The subscripts of the p-values: A :=
MANOVA, B := Spatial signs and C := Spatial ranks. The ordinal number
of the plant in the cascade: 13.
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Figure 8: Case Real II: Winter time data from the years 2012 and 2013 form
the sample 1 whereas the sample 2 consists of random days from the winter
2014. The y-axis is the maximum difference in the plant’s downstream level
during a day and the x-axis is a measure of benefits, approximated by the
average spilling of the water through the plant. The subscripts of the p-
values: A := MANOVA, B := Spatial signs and C := Spatial ranks. The
ordinal number of the plant in the cascade: 14.
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consider measuring heights of groups of persons and all the measurements
are conducted using both inches and meter-scale. In that case, all the test
statistics presented would not be affected by the unit change. Oja [2010]
provides the affine invariant versions of the non-parametric test statistics as
well but they are not presented in this work.

According to the figure 3, in the case 1 the tests based on the identity score
function (MANOVA, denoted by A) and on the spatial ranks (C) seem to be
quite identical whereas the test based on spatial signs (B) does not reject the
null-hypothesis that often. But, when similar data is contaminated with some
unsymmetrical outliers in the case 2, the differences between the tests become
significant. This time A differs from the others two and it would not reject
the null hypothesis in more than 10% of tests even if the theoretical locations
differ remarkably. The location shift, though, is into the same direction as
is the tail of the data. Hence, the shift of the smaller group is faded behind
the outliers of the larger group. The figure 2 shows that the smaller sample
is inside the extremes of the larger sample. Also, the outliers pull the sample
means into the direction of the tail whereas the sample medians are more
robust. In that very case the null hypothesis was rejected by all the three
tests.

In the case 3 all the three groups shared the same covariance matrix which
produced highly correlated data. The location shift was then into the di-
rection of the smaller main-axis of the ellipse. This appeared to be slightly
difficult to the test based on the spatial signs whereas the MANOVA and the
test based on spatial ranks were again quite similar

In the case 4, the only difference between its variations a and b is the scatter
parameter of the group 2, hence contradicting with the null-hypothesis F1 =
· · · = Fc. In the case 4a, the p-values of all the tests are more or less similar
even though the spatial sign-test can be distinguished. In the case 4b the
test B seems somewhat identical but the other tests reach the level of 100
%-rejections much later, and A is at significantly lower level.

To revisit the salary example presented in the chapter 3, consider the null
hypothesis: the "centrals" of the salaries are equal in the two firms. The tests
yield very distinct values of the test statistic and the p-values are pA = 1,
pB = 1 and pC = 0.0008. Hence, the tests A and B cannot recognize any
difference between the two firms whereas C indicate a "very sure" difference.
However, the data is quite odd to be studied utilizing these methods, but it
is important to be aware that the classical MANOVA (A) is sensitive to its
assumptions, especially when the sample sizes are "too" small.
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To sum up the results of the simulations, the tests are mainly similar but
there are drastic differences as well. For example, if the data sets follow
multivariate normal distributions, then the tests A and C are practically the
same but the A is much more sensitive to tailed data. Still, all the tests
get affected by the anomalies generated to the data. The test A is the most
sensitive to anomalies whereas the test B is the most robust one. On the other
hand, the test B does not indicate well the location shift of the case study
3 whose idea was to move theoretical location parameter into the direction
of smaller (co)variation. Therefore the test B might be too robust and lose
some relevant information.

According to the real cases (I and II), the results of the tests A and C seem
to be quite similar. The difference in the p-values in the case I is only
|pA − pC | = 0.0014 and in the case II |pA − pC | = 0.0021, which both are
practically insignificant. The test B differs from the others although the
difference in the case II is not significant. The data sets of both cases more
or less follow bivariate normal distribution and their marginal distributions
are almost normal. Though, the scatter plot (7) has a shape of a banana.
Apparently, the change in quality in the case II is much more questionable
than the improve in the case I. The test B gave contradicting results and
therefore, in these cases, it does not prove to be as reliable as the others.
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7 Final Remarks

The purpose of this work was to discuss different test statistics to treat the
several sample location problem. The parametric classical MANOVA with
two different formulations and two non-parametric tests were considered.
The MANOVA is affine invariant whereas the non-parametric tests are only
location and scalar invariant which still enables numerous practical applica-
tions. The three tests were compared using both simulated data and real
data. The practical frame of reference of the work is measuring quality and
its changes of a complex process which in this case was producing energy in
a hydro-power cascade.

As a conclusion, the tests based on spatial signs and ranks offer an alternative
to the classical MANOVA in cases the assumptions of multinormality or
equal scatter parameters do not exactly hold. The test based spatial ranks
can be used whenever applying the MANOVA. In cases the anomalies of the
data are significant, the MANOVA must be discarded and rank-test must
be considered thoroughly. The most robust test against the anomalies is the
test based on spatial signs but in some cases it might be too robust – leading
to loss of relevant information. Still, no kind of guarantee of the methods
proposed or general recommendations of their usage can be provided as a
result of this work.

From the practical point of view, the relevance of the tools discussed in this
work are subordinate to the selection of the data and to the quality measures.
In practise, defining the quality measures may be ambiguous because many
different values are involved. However, this problem would exist whichever
family of methods were applied. For example, functional data analysis would
offer inherently time-series based analysis tools but still the definition of the
quality measures would involve similar ambiguous phases. Assuming relevant
quality measures, the tools discussed in this work are suitable for finding
changes in the process quality. In the end, the most important things in this
kind of quality analysis are, in the first place, to comprehend the phenomenon
under the investigation and, moreover, to know well some applicable tools to
conduct the analysis.
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A Appendix A: Matlab-functions programmed

The most important Matlab-functions programmed for this work are pre-
sented here. Some of the functions in this are fundamental to the topic,
such as spatial signs whereas some of them are totally dependent on the
notation (for example groupMean.m). In the end, there is a script present-
ing the procedure to conduct an experiment. The dependencies to exter-
nal functions are shown, including the Matlab-functions that are not part
of the Matlab-core installation. Many Matlab’s core-functions are utilized
even though they are not explicitly listed (i.e. sum, mean, cat, size etc).

function U = spatSigns(X)
%SPATSIGNS Calculates the spatial signs of
%data matrix X (n x p).
% Copyright Sakke Rantala 2015

% L2-norm, sum into the dimension of p. Is zero IFF x_i == 0
norms = sqrt(sum(X.^2,2));
% Every row of X is divided by corresponding norm
U = bsxfun(@rdivide, X, norms);

% If some observation vector (row) was zero, then
% dividing by its norm will produce NaN’s:
U(isnan(U)) = 0; % By definition, sign of 0-vector is 0.
end % spatSigns

function R = spatRanks(X)
%SPATRANK Calculates spatial (centered)
%rank of (n x p)-matrix X
% R_i = AVE_j(U(y_i - y_j))
% (c) Sakke Rantala 2015

[n,p] = size(X);

% WAY 1: using for-loops
% R = zeros(size(X));
% for i = 1:n
% for j = 1:n
% R(i,:) = R(i,:) + spatSigns(X(i,:) -X(j,:))/n;
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% end
% end

% WAY 2: using bsxfun
% Is faster than WAY 1 because spatSigns.m
% can handle the matrices as well as vectors:
R = zeros(size(X));
for j = 1:n

R = R + spatSigns(bsxfun(@minus, X,X(j,:)));
end
R = R/n; % Averaging

end % spatRanks

function [med,w,norms] = spatMed(x)
%function [med,w,norms] = spatMed(x)
%
%Spatial Median based on Functional Spatial Median (SpMed.m)
%proposed by Daniel Gervini,
%https://pantherfile.uwm.edu/gervini/www/RFDA.html,
%accessed 11.5.2015
%
% Input variables:
% x: (n x p) - data matrix. Missing values or NaN values
% not allowed.
%
% Output variables:
% med: Spatial median (1 x m vector).
% w: Weights (n x 1 vector). The spatial median is w’*x.
% norms: Distances between each curve and
% the median (n x 1 vector).
% Note that the median minimizes sum(norms)
% by definition, and that w = norms.^(-1)/sum(norms.^(-1)).

%% Input check
if any(any(isnan(x)))

error(’NaN-values are not allowed.’)
end
[n,p] = size(x);
%% Inner-product matrix
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% By Daniel Gervini, modifications by Sakke Rantala
A = 0.5*(x(:,1:p-1))*x(:,1:p-1)’ + ...

x(:,2:p)*x(:,2:p)’;

%% Iterative minimization from sample mean
% By Daniel Gervini, the plotting property by Sakke Rantala
w = ones(n,1)/n;
norms = sqrt(diag(A) + w’*A*w - 2*A*w);
f = sum(norms);
err = 1;
iter = 0;
% Added by Rantala, to save the evolution of the iteration:
% W = [];
while err>1e-7 && iter<100

iter = iter+1;
f0 = f;
if any(norms<eps)

i0 = find(norms<eps);
w = zeros(n,1);
w(i0) = 1/length(i0);

else
w = 1./norms;
w = w/sum(w);

end
norms = sqrt(diag(A) + w’*A*w - 2*A*w);
f = sum(norms);
err = abs(f/f0-1);

% W = [W;w’*x];
end
%% Added by Rantala, to plot the evolution of the iteration
% iter
% figure
% plot(1:length(W), W)
%% Output
med = w’*x;

end % spatMed

function [Q, varargout] = statQ(T, N)
%STATQ Calculates the Q^2-test statistic out of
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%the centered scores T (n x p)-matrix.
%@param N stores the number members in each group.
% See reference:
% Oja, Hannu, "Multivariate Nonparametric Methods with R",
% 2010.
% N = [n_1, n_2, ... , n_c]
% Note: sum(N) == n and size(T) = [n,p]
% External functions used:
% groupMean.m
% sampleCovariance.m
% chi2cdf (from the Matlab-statistic toolbox)
% (C) Sakke Rantala 2015

% The dimensions of the (n x p)-score-matrix:
[n,p] = size(T);

% Calculate the mean of each group
Ti = groupMean(T,N);

% Evaluate the sample covariance matrix
% Using the first c-1 groups:
% NE = cumsum(N);
% B = sampleCovariance(T(1:NE(end-1),:));
% Using all the data:
B = sampleCovariance(T);

% Save the inverse into the memory as it might be
% applied multiple times in
% the for-loop below:
Bin = inv(B);

% Sum up the Q-value:
Q = 0;
for i = numel(N)

Q = Q + N(i)*Ti(i,:)*Bin*Ti(i,:)’;
end

% If p-value requested, return it using
% Matlab-Statistics toolbox function chi2cdf
if nargout > 1

df = (numel(N) - 1)*p;



35

varargout{1} = 1 - chi2cdf(Q,df); % p-value
end

end % statQ

function B = sampleCovariance(X)
%SAMPLECOVARIANCE Calculates the sample covariance
%of (n x p) -matrix
% (c) Sakke Rantala 2015
[n,p] = size(X);
% Estimate for covariance of data, B = E[T_{ij}T_{ij}’]
B = zeros(p,p); % Preallocation
for i = 1:n

B = B + X(i,:)’*X(i,:); % (p x 1) * (1 x p) --> (p x p)
end
B = B/(n); % average
end % sampleCovariance

function M = groupMean(X, N)
%GROUPMEAN Evaluates (numel(N)) group means
%of the (n x p)-data matrix.
% N = [n_1, n_2, ... , n_c] stores the group information
% Note: n == sum(N).
% (C) Sakke Rantala 2015
[n,p]= size(X); % Dimensions of the input matrix
g = numel(N); % Number of groups
if(n~=sum(N))

disp(’Dimensions do not match.’)
return

end
M = zeros(g,p); % Pre-allocation
NE = cumsum([0,N]);
for i = 1:g

M(i,:) = mean(X(NE(i)+1:NE(i+1),:),1);
end
end % groupMean

function sp = groupSpMed(Y,N)
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%GROUPSPMED Evaluates (numel(N)) group spatial medians of
% the (n x p)-data matrix.
% N = [n_1, n_2, ... , n_c] stores the group information
% Note: n == sum(N).
% (C) Sakke Rantala 2015

[n,p]= size(Y);
g = numel(N);

if(n~=sum(N))
disp(’Dimensions do not match.’)
return

end

sp = zeros(g,p); %Pre-allocation
NE = cumsum([0,N]);
for i = 1:g

sp(i,:) = SpMed(1:p, Y(NE(i)+1:NE(i+1),:));
end

end % groupSpMed

function M = groupMember(X, N)
%GROUPMEMBER Creates a group membership matrix
%(another formulation of MANOVA)
% M_ij = 1, if ith observation
% belongs to the jth group.
% Assumptions: The groups are in order in @param X
% and the number of the members of the groups are
% determined by the vector N = [n_1, n_2, ... , n_c].
% (c) Sakke Rantala 2015
[n,p] = size(X);
c = numel(N);
M = zeros(n,c); % Pre-allocation
N = cumsum([0,N]);
for i = 1:c

M(N(i)+1:N(i+1),i) = 1;
end
end % groupMember
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The Matlab-script below contains only the core information regarding to the
experiment conducted, based on the functions presented earlier. For example
plotting and saving procedures are mainly omitted.

%%% EXPERIMENTS: SEVERAL SAMPLE LOCATION PROBLEM

% *** Preparation for the testing ***
% GROUP SIZES n_i (number of elements define
% the number of groups):
N = [20,100,20]; % USER SET: Groups
p = 2; % USER SET: Number of dimensions:

% N = [80,20];
NT = cumsum([0,N]);
n = sum(N); % Number of observations
c = numel(N); % Number of groups

% SCATTER PARAMETER (USER SET):
% 1. Neat experiments:
S = 2*eye(p); % % Just for simplicity only p-balls
% 2. For the case 3
% S = 3*(1 - 2*rand(p, p));
% S = S*S’; % To make it positive-definite
% lambda = eig(S);
% [v,l] = eig(S);

% LOCATION PARAMETERS (USER SET):
MU = [0,0,0,0;1,1,2,2;2,2,4,5];

% MU = randi([-5, 5], c, p); % Random locations
% Location determined by the scatter parameter:
% MU = [0,0; 1.5*lambda(1)*(v(:,1))’; 3*lambda(1)*v(:,1)’];

% THE NUMBER OF SIMULATIONS (USER SET)
numT = 100;%50; % different values of the scale factor
numS = 1000;%200; % Simulations/test
% The scale parameter:
b = linspace(0,1,numT);
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% PRE-ALLOCATION
% The value of test statistic for each test
QA = zeros(numT,numS); % TestA
QB = zeros(numT,numS); % Test B
QC = zeros(numT,numS); % Test C
% p-value of each test

PA = zeros(numT,numS); % Test A
PB = zeros(numT,numS); % Test B
PC = zeros(numT,numS); % Test C

% Counters: how many tests are rejected:
p1 = 0.05; % threshold p1
p2 = 0.01; % threshold p2
p3 = 0.001; % threshold p3

tt = tic;
for i = 1:numT

% Group center parameters:
mu = b(i)*MU; % scaled by b(i)
for j = 1:numS

% *** GENERATE DATA ***
% DATA simulation
X = zeros(sum(N),p);
for k = 1:numel(N)

G = bsxfun(@plus, mu(k,:), randn(N(k),p)*S);
% % Generating unsymmetric outliers
% (uncomment if needed):
% a = rand(N(k),1) > 0.8;
% G(a,:) = -abs( bsxfun(@plus, mu(k,:),...
% 5*randn(sum(a),p)*S));

% ADD GROUP TO THE DATA MATRIX
X(NT(k)+1:NT(k+1),:) = G;

end
% X = exp(X); % Log-normal random variables

% *** TESTING ***

% TEST A: MANOVA
Tij = bsxfun(@minus, X, mean(X,1));
[QA(i,j), PA(i,j)] = statQ(Tij,N);
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% TEST B: SPATIAL SIGN
spm = SpMed(1:p, X);
% By choosing the spatial median as the shift vector:
shiftedX = bsxfun(@minus, X, spm);
% We get the inner centered scores (AVE(hatUij) = 0)
hatUij = spatSigns(shiftedX);
[QB(i,j), PB(i,j)] = statQ(hatUij, N);

% TEST C: SPATIAL RANKS
Rij = spatRanks(X); %
[QC(i,j), PC(i,j)] = statQ(Rij,N);

end
% Timing the procedure
disp(’-----time---------’)
disp(i)
disp(toc(tt))

end

% *** ANALYSIS ***
% How many times null hypothesis is rejected?
TA1 = PA < p1;
TB1 = PB < p1;
TC1 = PC < p1;

TA2 = PA < p2;
TB2 = PB < p2;
TC2 = PC < p2;

TA3 = PA < p3;
TB3 = PB < p3;
TC3 = PC < p3;

%% An example of PLOTTING
ta = [sum(TA1,2), sum(TA2,2), sum(TA3,2)]/numS*100;
tb = [sum(TB1,2), sum(TB2,2), sum(TB3,2)]/numS*100;
tc = [sum(TC1,2), sum(TC2,2), sum(TC3,2)]/numS*100;

t1 = [sum(TA1,2), sum(TB1,2), sum(TC1,2)]/numS*100;
t2 = [sum(TA2,2), sum(TB2,2), sum(TC2,2)]/numS*100;
t3 = [sum(TA3,2), sum(TB3,2), sum(TC3,2)]/numS*100;
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figure; plot(b,t1’) % p1
figure; plot(b,t2’) % p2
figure; plot(b,t3’) % p3
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