
AALTO UNIVERSITY

SCHOOL OF SCIENCE

Tuomas Nikoskinen

FROM NEURAL NETWORKS TO

DEEP NEURAL NETWORKS

Mat-2.4108 Independent Research Project in Applied Mathematics

Espoo 2015

Supervisor:

Prof. Ahti Salo

Instructor:

Prof. Ahti Salo

The document can be stored and made available to the public on the open internet

pages of Aalto University. All other rights are reserved.

AALTO UNIVERSITY
SCHOOL OF SCIENCE
P.O. Box 1100, FI-00076 AALTO
http://www.aalto.fi

ABSTRACT

Author: Tuomas Nikoskinen

Title: From Neural Networks to Deep Neural Networks

Degree
programme:

Engineering Physics and Mathematics

Major
subject:

Systems and Operations
Research

Minor
subject:

Computational Science and
Engineering

Chair
(code):

Mat-2

Supervisor: Prof. Ahti Salo

Instructor: M.Sc. Ahti Salo

Neural networks are based on the idea of mathematically representing
information processing in human brains. They imitate the structure of
brain by consisting of fundamental computing units, perceptrons, assem-
bled in a connected network. By introducing nonlinear transformations
to the flow of information between the layers of perceptrons, neural net-
works can model nonlinear phenomena.

The overarching limitation of classical multilayer perceptron (MLP) neu-
ral networks is that some complex, nonlinear functions cannot be effi-
ciently represented by architectures that are too shallow, that is, have
too few hidden layers and thus too few levels of nonlinear transforma-
tions. Consequently, there has been a desire to build neural networks
with a deep architecture, but the results have been poor until the shift
of paradigm in training deep neural networks.

Deep neural networks (DNN) have the exact same structure as classi-
cal MLP neural networks, except that the number of hidden layers is
greater so that they can be considered deep. DNNs differ from MLP
neural networks in the training phase. Instead of directly learning a
DNN, a generative deep belief network (DBN) is trained first and then
transformed into a DNN. Properties of DBNs are easily confused with
DNN properties due to the critical role of DBNs in the DNN training
phase.

This study presents and evaluates the principles behind the classical
MLP neural networks and the modern deep neural networks. It also
reviews the differences and similarities between the two.

Date: March 19, 2015 Language: English Number of pages: 23

Keywords:
Deep neural network (DNN), Deep belief network (DBN), Restricted
Bolzmann machine (RBM), MLP neural network, Deep learning

iii

Contents

Abstract ii

Contents iii

Symbols and Abbreviations iv

1 Introduction 1

2 Neural Networks 3
2.1 Perceptrons . 3
2.2 Neural Networks—Networks of Perceptrons 5
2.3 Training Neural Networks . 7

2.3.1 Backpropagation . 8

3 Deep Neural Networks 10
3.1 Restricted Boltzmann Machines 10
3.2 Deep Belief Networks—Networks of RBMs 12
3.3 Training Deep Neural Networks 14

3.3.1 Training Restricted Boltzmann Machines 15
3.3.2 Generative Pretraining of Deep Belief Networks 16

4 Conclusions 19

References 21

iv

Symbols and Abbreviations

Matrices are capitalized and vectors are in bold type.

Operators and miscellaneous notation

1 : n 1, . . . , n

x1:d Scalars x1, x2, . . . , xd

x Vector x

A> Transpose of matrix A

I Identity matrix

E(b) Expectation of b

N (m,Σ) Gaussian distribution with mean m and covariance Σ

p(y | x) Conditional probability density of y given x

R The real numbers

Abbreviations

DBN Deep belief network

DNN Deep neural network

MLP Multilayer perceptron

MAP Maximum a posteriori

MSE Mean-square error

RBM Restricted boltzmann machine

1

1 Introduction

The origins of neural networks date back to attempts to find a mathematical

representation for information processing in human brains. (McCulloch and

Pitts, 1943). The brain far exceeds the capabilities of modern engineering

devices in many information processing domains including learning, vision

and speech recognition. Thus, a natural approach to developing computa-

tional methodology for information processing is to use the characteristics of

brain as a starting point. The brain consists a huge number (around 1011

according to Azevedo et al., 2009) of processing units, neurons, that oper-

ate in parallel and are highly inter-connected through synaptic connections.

Neural networks are designed after these same characteristics: the compu-

tational power of neural networks is based on a large number connected of

processing units operating in parallel.

Artificial neural networks have been of scientific interest ever since Rosenblatt

(1958) first introduced the perceptron. Perceptrons are used as the funda-

mental processing units in standard neural networks. Research on neural

networks did stagnate after Minsky and Papert (1969) criticized perceptrons

of their limited capabilities, but, was rekindled in 1980’s through the inven-

tions of multilayer perceptron (MLP) neural networks (Rumelhart, David E

and McClelland, James L and PDP Research Group, 1986) and the famous

backpropagation algorithm for training them (Rumelhart et al., 1986). Since

then, various kinds of neural networks or variants of have been proposed for

machine learning purposes (see, e.g. Alpaydin, 2004; Bishop, 2006). In the

following, we refer to these models as having a shallow architecture to make

the distinction between deep models having a deep architecture. The depth

of a model architecture refers to the number of levels of nonlinear operations

in the function learned.

The overarching limitation of shallow models is that some complex, highly

nonlinear functions cannot be efficiently represented by architectures that are

too shallow (Bengio, 2009). In other words, if a function can be efficiently

represented by a deep architecture, it might require an exponential number of

computational units to be represented ,by a more shallow architecture. This

suggests that a deep model might be required to successfully model some

complex functions. In practice for example, a deep neural network (DNN)

2

clearly outperforms shallow models in a handwritten digit classification task

with the large well-known MNIST dataset (Hinton et al., 2006).

For a long time, there has been a desire to train neural networks with a deep

architecture (Utgoff and Stracuzzi, 2002; Bengio et al., 2007) but the results

have been poor (Glorot and Bengio, 2010). In general, the challenge in train-

ing deep neural networks in the classic way—by conducting the training in a

supervised manner using a gradient-based optimization starting from a ran-

dom initialization—is that the parameter estimation iteration often appears

to get stuck in poor solutions and thus the model produces poor results.

The breakthrough was achieved when Hinton et al. (2006) proposed a new

approach to training deep neural networks, which led to a shift of paradigm

in approaching the training of deep models. In short, the idea in the new

approach is to first pre-train a generative deep belief network (DBN) and

then to transform the pre-trained DBN to a discriminative deep neural net-

work. Although this may appear straightforward, the new training approach

consists of many new computational elements, such as restricted Boltzmann

machines (RBM) that are not familiar from the context of classical neural

network theory.

Since 2006, deep neural networks and deep models in general have become

increasingly popular and they have successfully been applied to a broad range

of machine learning tasks (see, e.g., Bengio, 2009). Although the popularity

is much due to the success of these methods, assumedly the human-like aim

of deep learning methods to learn feature hierarchies, where higher lever

features are composed of lower level features, plays a part in the popularity

as well.

In this study, we review the main ideas and principles behind the classical

MLP neural networks and the modern deep neural networks. We conclude

by discussing the differences and similarities between the two.

3

2 Neural Networks

Multilayer perceptron (MLP) neural networks are built by assembling the

fundamental computing units, perceptrons (Rosenblatt, 1958), to a network

in parallel and layer-wise fashion. Perceptrons as such are linear comput-

ing units, but by introducing nonlinear transformation to the intermediate

perceptron layers, the hidden layers, neural networks can also be applied to

nonlinear problems. The objective in supervised training of neural networks

is to estimate the model free parameters, the network connection weights,

to mimic patterns in the training input/output data set. Backpropagation

algorithm is the original and most basic method for neural network training.

2.1 Perceptrons

Perceptrons are the fundamental processing units in a neural network. A

perceptron computes an output y ∈ R from inputs xi ∈ R, k = 0, 1, . . . , d

where each input unit xi is associated with a corresponding connection weight

wi ∈ R, i = 0, 1, . . . , d. The architecture of a single perceptron is illustrated

in Figure 1a.

A perceptron is a linear processing unit that transforms the input units xi

to an output y with a linear transformation

y(x1:d, w1:d) =
d∑
i=1

wixi + w0, (1)

where x1:d = x1, x2, . . . , xd and x0 is a bias unit that generalizes the model

and is set to constant x0 = 1. We can write the perceptron output equation

(1) in compact vector form of y(x,w) = wTx, where the input units and

corresponding weights are represented by vectors x = [1, x1, . . . , xd]
T and

w = [w0, w1, . . . , wd]
T respectively. The output equation (1) defines a line

when the input is one dimensional and a hyperplane in a multidimensional

case.

As such, perceptrons can be applied to linear regression and binary classi-

fication. The former application corresponds to the case where a set of N

input/output pairs is given D = {x(n) ∈ Rd, d(n) ∈ R | n = 1, 2, . . . , N} and

4

the objective is to choose w to best fit the model outputs y(x,w) against the

known outputs d(n) given the inputs x(n). In binary classification the given

outputs d(n) belong to two distinct sets (classes) and thus can be treated as

binary variables d(n) = {0, 1} ∀n. In this case the objective is to choose

w so that the model y(x,w) defines a line or hyperplane that separates the

different sets of binary outputs from each other. This is illustrated in Fig-

ure 1b, where a perceptron could separate the filled and empty circles—two

distinct classes of outputs—from each other, because the circles are linearly

separable, but could not separate the squares from the circles, because the

solution (separating line) in this case is nonlinear.

A perceptron can be used as a binary classifier by applying the Heaviside

step function φ on the perceptron output equation (1)

φ(y) =

 1, if y(x,w) > 0

0, otherwise,
(2)

and by classifying the output y depending on whether φ(y) is 1 or 0.

x0

x1

x2

xd

y

w0

w1

w2

wd

Input
layer

Output
layer

(a) Perceptron architecture (b) Linear and nonlinear
separators (dashed lines)

Figure 1: Panel (a) shows the architecture of a single perceptron. The inputs
xi, i = 0, 1, 2, . . . , d are connected to the output y through directed connections
with a weight wi, i = 0, 1, . . . , d corresponding each input respectively. Panel
(b) shows three arbitrary sets where the filled and empty circles are linearly
separable where as the squares are nonlinearly separable from the circles. A
perceptron could separate the two sets of circles from each other but not the
squares from the circles.

5

2.2 Neural Networks—Networks of Perceptrons

Neural networks are networks of perceptrons. Perceptrons are typically as-

sembled in parallel and in layers in a neural network, which is illustrated in

Figure 2. Parallel perceptrons share the same input units and extend the

computational capabilities of a single perceptron by allowing computation of

a multidimensional output, that is y ∈ Rm,m > 1. The idea behind orga-

nizing perceptrons in layers is that the intermediate layers, often called hid-

den layers, introduce a nonlinear transformation to the information flowing

through the network. A network of perceptrons with the addition of nonlin-

earity through the hidden layers makes it possible to apply neural networks

to nonlinear regression and classification problems.

The architecture of a multilayer perceptron (MLP) network depicted in Figure

2 shares the same essential features with a single perceptron. The input units

xi are connected to the hidden units hj through directed connections with

weights wij and the hidden units are connected to the output units yk in

similar manner but with different weights vjk. The weight subscripts indicate

which units are connected, for example wij is the weight for the connection

of input unit xi and hidden unit hj . The significant difference between a

perceptron architecture and a multilayer perceptron network architecture is

the nonlinearity of the hidden units’ output. Each hidden unit is a perceptron

x0

x1

x2

xd

h1

h2

hp

y1

ym

w01

wdp

v11

vpm

Input
layer

Hidden
layer

Output
layer

Figure 2: Architecture of a network of perceptrons (i.e. a neural network).
Perceptrons are assembled in the network both in parallel sharing the same
inputs and in layers taking the previous layer outputs as new inputs.

6

and applies the perceptron output equation (1) to its inputs. In addition to

this, however, a hidden unit also applies a nonlinear transformation ϕ(x) to

the linear output it computes via perceptron output equation. Thus, the

output from a hidden unit hj is

hj = ϕ(wT
j x), (3)

where x is the augmented input vector and wj = [w0j , w1j , . . . , wdj]
T contains

the weights connecting inputs to the hidden unit hj .

The nonlinear transformation ϕ(x) is often taken to be the sigmoid function

ϕ(x) =
1

1 + exp (−x)
, (4)

but for example a hyperbolic tangent function or a Gaussian are often used

as well. Sigmoid, hyperbolic tangent or Gaussian are continuous and differ-

entiable versions of the Heaviside step function (2) restricting the output to

range [−1, 1] or [0, 1]. The nonlinear transformation needs to be differen-

tiable because gradient-based methods are used to train the network. Here,

training refers to the procedure of choosing the weights w and v given the

modeling objective and input/output dataset.

The output unit yk of a neural network is a perceptron that applies the linear

perceptron output equation to its inputs, that are the hidden units’ outputs,

that is

yk(h,vk) = vT
kh, (5)

where h = [h1, h2, . . . , hp]
T (p hidden units) and vk = [v1k, v2k, . . . , vpk]

T (p

hidden units and thus p output connection weights). For classification pur-

poses, the output equation (5) can be used by choosing the class label k∗ that

maximizes yk over the output units k = 1, 2, . . . ,m. Posterior probabilities

p(yk) for class labels are readily available through the use of softmax function

p(yk) =
vT
kh∑m

k=1 vT
kh

. (6)

Note that the neural network architecture is not limited to a single hidden

layer. However, additional hidden layers introduce additional complexity to

the neural network model, which makes it harder to analyze the network and

7

its behavior. Also, all input or hidden units do not need to be connected

to all units on the next layer. If prior information is available about the

modeled phenomena that implies local structures in the data, it may be

sensible to introduce similar local structures to the network to account for

this information.

2.3 Training Neural Networks

Training a neural network refers to the action of inferring or learning values

for the model free parameters, weights of the hidden units w and weights

of the outputs v. In supervised learning there is available a set of known

outputs d(n) corresponding to inputs x(n), a training set, and the objective

of training is to choose appropriate weights given the training set.

A straightforward approach to supervised learning is to formulate training

as an optimization problem

w∗,v∗ = arg min
w,v

ξ(d,y), (7)

where the objective is to find the weights w and v so that the error function

ξ, that measures the discrepancy between known outputs and the model pro-

duced outputs, is minimized. A typical choice for error function in regression

problems is the mean-square error (MSE)

ξMSE(d,y) =
1

2
E
(
‖d− y‖2

)
=

1

2N

N∑
n=1

m∑
k=1

(d
(n)
k − y

(n)
k)2

(8)

and cross entropy in classification problems with more than two classes

ξent(d,y) = −
N∑
n=1

m∑
k=1

d
(n)
k log y

(n)
k , m > 2. (9)

A Bayesian approach to training neural networks is to treat the weights w,

v as random variables which have a posterior probability distribution

p(w,v | D) =
p(D | w,v) p(w,v)

p(D)
, (10)

8

where D is the dataset containing the known inputs and outputs. The weights

are then solved from the problem of maximizing the log posteriori and the

solution is called the maximum a posteriori (MAP) solution

w∗,v∗ = arg max
w,v

log p(w,v | D). (11)

If we specify a Gaussian prior for the weights p(w,v) ∼ N (0, λ−1I), it turns

out that the MAP solution (11) minimizes the augmented error function

ξλ(d,y) = ξMSE(d,y) +
λ

2
θTθ, (12)

where θ contains all the model parameters, that is θ = [wT,vT]T. This aug-

mented error function ξλ corresponds to the case when a popular regularizer,

weight decay, is used to regulate the values of weights and thus mitigate the

problem of overfitting neural networks in the training phase.

2.3.1 Backpropagation

The backpropagation algorithm is the original method to train neural net-

works by solving the problem (8) or an equivalent optimization problem.

The basic backpropagation algorithm is a two-step instantaneous stochas-

tic gradient algorithm used to update the weights of a neural network. In

the forward step, the network outputs are computed from the given inputs

and fixed weights. In the backward step, the weights of the network are up-

dated. To update the network weights the computed model approximation

errors are propagated backwards in the network, hence the algorithm name

backpropagation.

The forward step equations are presented in the Section 2.2 but we restate

them here for convenience

hj(x,wj) = ϕ(wT
j x),

yk(z,vk) = vT
kh.

(13)

In these equations x is the input vector, hj is the hidden unit j output, yk

is the output unit k output, wj and vk are the weight vectors for the hidden

unit j and output unit k and ϕ(x) is the sigmoid function (4).

For the backward step equations, we use here the mean-square error function

9

(8) and derive the basic backpropagation update equations for the weights

w and v that can be used to solve the problem (7) in a regression problem.

By differentiating (8) with respect to the weights over the whole dataset

n = 1, 2, . . . , N we get

−∂ξMSE

∂vjk
=

1

N

N∑
n=1

(d
(n)
k − y

(n)
k)hj

−∂ξMSE

∂wij
= − 1

2N

N∑
n=1

∂ξMSE

∂y
(n)
k

∂y
(n)
k

∂h
(n)
j

∂h
(n)
j

∂wij

=
1

N

N∑
n=1

m∑
k=1

(
(d

(n)
k − y

(n)
k)vjk

)
h
(n)
j (1− h(n)j)x

(n)
i .

(14)

The equations (14) are derived from a batch learning perspective in which

the weights are updated after a complete pass of the dataset instead of doing

the update after each forward and backward pass of a single input/outpair

data point. The backpropagation backward step equations are derived from

the equations (14) by defining a learning parameter η and writing

vjk(l + 1) = vjk(l)− η
∂ξMSE

∂vjk

wij(l + 1) = wij(l)− η
∂ξMSE

∂wij
.

Here l indicates the iteration round. The learning parameter η defines the

step size in the iterative updates. More advanced approach is to adjust value

of η dynamically during the iteration instead of fixing it to a constant value.

In addition to the treatment of the learning parameter, there are numerous

other variations and enhancements to the standard backpropagation algo-

rithm presented here.

10

3 Deep Neural Networks

A deep neural network (DNN; Bengio, 2009) is built from a deep belief net-

work (DBN; Hinton et al., 2006) by transforming a generative belief network

into a discriminative neural network. The transformation is done by adding

a discriminative layer of computing units on top the DBN architecture that

consists of layers of stacked restricted Boltzmann machines (RBM; Smolen-

sky, 1986). DBN is a generative model because its processing units, RBMs,

are generative by nature. The training of DNNs is carried out in two phases.

First the underlying generative DBN is pretrained in an unsupervised train-

ing phase. After training the underlying DBN, the weights of a discriminative

DNN are fine-tuned in a supervised training phase.

3.1 Restricted Boltzmann Machines

A restricted Boltzmann machine is a generative stochastic neural network

which contains stochastic binary units on two layers: the visible layer and

the hidden layer. The units are fully connected between the layers but no

intra-layer connections between the units exist—this is unlike in a Boltzmann

machine, hence the name restricted Boltzmann machine. The architecture of

an RBM is illustrated in Figure 3. Note that although RBMs and parallel

perceptrons have a very similar network structure (see the first two layers in

Figure 2 for a parallel perceptron structure), the stochastic and generative

nature of RBMs set them apart from parallel perceptrons.

h1 h2 h3 hp

x0 x1 xd

w01 wdp

Hidden
layer

Visible
layer

Figure 3: Architecture of a restricted Boltzmann machine (RBM). The visible
units xi and hidden units hj are connected through undirected and symmetric
connections. There are no intra-layer connections exist unlike in Boltzmann
machines, hence the name restricted Boltzmann machine.

11

The generative nature of RBMs stems from their design. RBMs do not

have output units as such. Rather, the connections between the units on the

visible layer (hereafter visible units) and on the hidden layer (hereafter hidden

units) are symmetric and undirected. Undirected and symmetric connections

between the units mean that the state xi of a visible unit affects the state hj

of a hidden unit, and vice versa, and that the connection weight wij between

the units i and j is symmetric wij = wji. In addition to weights, RBM

parameters include a constant bias term for each visible and hidden unit,

bi ∈ R and ci ∈ R, respectively. In learning RBMs, and generative models

in general, the objective is to infer the model parameters from known input

data in such way that the model can generate data with similar distribution.

The stochastic nature of RBMs follows from the fact that the visible and hid-

den states are stochastic. The states are binary, i.e. xi, hj ∈ {0, 1} ∀ i, j, and

the joint probability characterizing the RBM configuration is the Boltzmann

distribution

p(x,h | θ) =
1

Z
e−E(x,h|θ), (15)

where x = [x1, x2, . . . , xd]
T, h = [h1, h2, . . . , hp]

T and θ contains all the model

parameters: the weights wij ∈ W ∈ Rd×h and the bias terms bi ∈ b ∈ Rd

and cj ∈ c ∈ Rh for visible and hidden units respectively. The normalization

constant is Z =
∑

x,h e
−E(x,h|θ) and the energy E(·) is defined by

E(x,h | θ) = −(xTWh + bTx + cTh). (16)

In RBMs, the hidden units are conditionally independent due to the absence

of connections between them; the hidden units are independent given the

visible units, hence the conditional independency. Therefore, and given the

exponential form of the joint probability (15), the conditional distributions

p(x | h,θ) and p(h | x,θ) factorize

p(x | h,θ) =
∏d
i=1 p(xi | h,θ) (17)

p(h | x,θ) =
∏h
j=1 p(hj | x,θ), (18)

where, given ϕ(x) = 1
1+exp (−x) , we have (see, e.g., Fischer and Igel, 2014)

p(xi = 1 | h,θ) = ϕ
(∑h

j=1wijhj + bi

)
(19)

p(hj = 1 | x,θ) = ϕ
(∑h

i=1wijxi + cj

)
. (20)

12

3.2 Deep Belief Networks—Networks of RBMs

Restricted Boltzmann machines (RBM) can be combined into a stack to

form a deep belief network (DBN), that is a multilayer stochastic generative

model. A DBN contains multiple hidden layers on top of the lowest level

RBM. The idea in having multiple hidden layers is that the preceding hidden

layer acts as the visible layer for the next hidden layer and thus the model

can incrementally learn more complex features of data. Although the con-

nections in an RBM are undirected, the connections between the DBN layers

are top-down directed expect between the two hidden layers on top of the

stack that have undirected, symmetric connections. Thus, a DBN does not

have a one-to-one correspondence with a stack of RBMs. Although in the

generative pretraining phase the connections of a DBN are treated as undi-

rected and symmetric. As in RBMs, the units between the DBN layers are

fully connected and there are no intra-layer connections. The architecture of

a DBN with four hidden layers is shown in Figure 4a.

x0 x1 xd

Hidden
layers
1–4

Visible
layer

Output
layer

1 2 3

1 2 3

1 2 3

1 2 3

1 1 1

2 2 2

3 3 3

4 4 4
p
4

p
3

p
2

p
1

h h h h

h h h h

h h h h

h h h h

(a) DBN architecture

h h h h

h h h h

h h h h

h h h h

x0 x1 xd

yOutput
layer

1 2 3

1 2 3

1 2 3

1 2 3

1 1 1

2 2 2

3 3 3

4 4 4
p
4

p
3

p
2

p
1

(b) DNN architecture

Figure 4: Panel (a) shows the architecture of a DBN. The connections between
the top two level hidden layers are undirected and symmetric where as the other
connections are top-down directed. Panel (b) shows the architecture of a DNN
where there are only feedforward connections. The weights of a trained DBN
can be used to initialize the weights of a DNN for a discriminative fine tuning.

13

The top two levels of a DBN, hL−1 and hL, form an RBM and the lower

levels form a directed sigmoid belief net, hL−2 ⇒ hL−3 ⇒ · · · ⇒ x, (see, e.g.,

Neal, 1992). The top-level RBM provides a prior for the hidden layer hL−2.

The joint distribution of a DBN is thus

p(x,h1,h2, . . . ,hL) = p(hL−1,hL)
L−2∏
l=0

p(hl | hl+1), (21)

where h0 = x and p(hL−1,hL) is the top-level RBM joint distribution (Hin-

ton et al., 2006; Bengio, 2009). The lower level layers hl, l ∈ [0, L − 2] are

conditional only on the layer above, p(hl | hl+1), because the DBN is top-

down directed expect for the top-level RBM. Note that in a deep Boltzmann

machine (Salakhutdinov and Hinton, 2009) the connections between the lower

level layers are also undirected and the conditional distribution of hl is con-

ditional on both the layer above and below, that is p(hl | hl+1,hl−1).

Samples from the generative DBN model can be obtained as follows (Bengio,

2009):

1. Draw samples of each hidden unit on the penultimate hidden layer

hL−1.

2. For each lower level layer hl, l ∈ [0, L− 2], draw samples of the hidden

units given the samples of the layer above.

3. The visible layer samples x = h0 are the DBN samples.

The samples in step 2 above are drawn from the conditional distributions

p(hl | hl+1). The initial samples from the layer hL−1 are produced in step 1

by conducting an alternating Gibbs sampling between the top-level RBM

distributions p(hL−1 | hL) and p(hL | hL−1) until the Gibbs chain has

converged and the samples of hL−1 represent p(hL−1 | hL).

A trained generative deep belief network is transformed to a deep neural

network by adding a discriminative layer y on top of the top-level RBM and

converting all the connections in the DBN to feedforward ones, see Figure 4b.

The estimated DBN parameters can directly be used as the DNN parameters

but typically, these are fine-tuned through a classical supervised parameter

estimation, for example by using the backpropagation algorithm.

14

3.3 Training Deep Neural Networks

Training deep neural networks in the standard discriminative and supervised

way, that is approach in training the classical feedforward neural networks, is

very hard and does not perform well (Glorot and Bengio, 2010). In essence,

the difficulty in training DNNs arises from the very large number of free

model parameters that are due to the deep model architecture.

Instead of training a DNN in a discriminative manner from the beginning, the

successful approach to training DNNs has been to first pretrain a generative

model transform this to a discriminative mode and finally fine tune the

model parameters with a standard discriminative training (Hinton et al.,

2006; Hinton and Salakhutdinov, 2006). The generative pretraining initializes

the model parameters to a parameter-space that forms a much better starting

point for the discriminative fine tuning phase and thus allows it make rapid

progress (Hinton et al., 2012).

In this section, we review the principles for training a DNN using the gener-

ative pretraining and discriminative fine tuning approach. In short, a DBN

is generatively pretrained first and then a discriminative fine tuning train-

ing is performed for the DNN that is formed from the pretrained DBN. To

train a DBN one must know how to train an RBM. Thus, we start with the

training of RBMs. Then we show how to conduct the layer-wise generative

pretraining of a DBN.

Transforming a DBN to a DNN can done simply by including an additional

discriminative layer on top of the DBN architecture and turning all the

connections in the network in to directed feedforward connections, see the

Figure 4. Performing the discriminative fine tuning for the DNN corresponds

to a standard discriminative training of MLP neural network, which we have

covered in the Section 2.3 and do not touch upon in this section. The

DNN parameters are initialized to the values found during the generative

pretraining and the discriminative fine tuning for these can be done, for

example, with the classical backpropagation algorithm, see Section 2.3.1.

15

3.3.1 Training Restricted Boltzmann Machines

Let us denote the likelihood of model parameters θ with L(θ) = p(x | θ).

The general approach to model parameter estimation is to find the parameter

estimates θ∗ by maximizing the log-likelihood

θ∗ = arg max
θ

logL(θ).

We derive the log-likelihood for RBMs by first marginalizing the joint distri-

bution (15) by summing over the hidden states

p(x | θ) =
∑
h

p(x,h | θ)

and then taking a log-transformation of the resulting marginal distribution

logL(θ) = log
∑
h

p(x,h | θ)

= log
∑
h

1

Z
e−E(x,h|θ)

= log
∑
h

e−E(x,h|θ) − logZ

= log
∑
h

e−E(x,h|θ) − log
∑
x,h

e−E(x,h|θ).

(22)

The partial derivatives of the likelihood with respect to the RBM model

parameters θi are defined by the equation (for a straightforward derivation,

see e.g., Fischer and Igel, 2014)

∂ logL(θ)

∂θi
=
∑
x,h

p(x,h | θ)
∂E(x,h | θ)

∂θi
−
∑
h

p(h | x,θ)
∂E(x,h | θ)

∂θi
, (23)

which is often in literature defined as follows, because the two terms in the

formula are expectations of the same argument but over different distribu-

tions, that is,

∂L(θ)

∂θi
= Ed1

[
∂E(x,h | θ)

∂θi

]
− Ed2

[
∂E(h | x,θ)

∂θi

]
.

Here E(·) is energy function defined in (16) and Ed denotes expectation taken

over distribution d. Here we have d1 = p(x,h | θ) and d2 = p(h | x,θ).

16

The second term in (23) can be computed analytically, see for example Fis-

cher and Igel (2014). This follows from the fact that the posterior p(h | x,θ)

of the hidden states can be factorized, see the equation (18), and also from

the derivatives ∂E(x,h|θ)
∂θi

being analytically computable for the RBM param-

eters. However, the first term in (23) is generally too burdensome for direct

computation. For this reason, MCMC sampling methods (see, e.g., Gelman

et al., 2004; Bishop, 2006) are employed to approximate the second term

by generating samples from the corresponding distribution and approximat-

ing the expectation with an sample average. Particularly, Gibbs sampling

(Geman and Geman, 1984) is typically used in training RBMs.

Contrastive divergence (CD, Hinton, 2002; Carreira-Perpinan and Hinton,

2005) learning is computationally a much more efficient approach to training

RBMs than the approach of approximating the second term in the exact log-

likelihood gradient (23) using MCMC methods. In k-step CD learning (typ-

ically k = 1) the log-likelihood gradient is approximated with a CDk(x
(0),θ)

function

CDk(x
(0),θ) =

∑
h

p(h | x(k̃),θ)
∂E(x(k̃),h | θ)

∂θi

−
∑
h

p(h | x(0),θ)
∂E(x(0),h | θ)

∂θi
.

(24)

Here x(0) is a known training input and x(k̃) is a sample produced by running

a Gibbs sampler for k steps from the initial state x(0). In principle, the

sample x(k̃) is produced by sampling h(t) on step t from p(h | x(t),θ) and

subsequently x(t+1) from p(x | h(t+1),θ).

The contrastive divergence approximation (24) is biased for two reasons.

First, the sample x(k̃) is not from the converged, stationary model distribution

(unless k →∞. Second, the approximation does not maximize the likelihood

of the data given the model (but rather a difference of two Kullback–Leibler

divergences). For detailed analysis and justification for using contrastive

divergence, see Bengio and Delalleau (2009).

3.3.2 Generative Pretraining of Deep Belief Networks

An efficient two-stage algorithm to training DBNs has been proposed by

Hinton et al. (2006). We present here the first stage of the algorithm which

17

corresponds to a layer-wise generative pretraining of a DBN—the second

stage presented by Hinton et al. (2006) corresponds to fine tuning the model

for generative purposes, which is not in our interests here.

In the generative pretraining stage a DBN is trained layer-wise starting from

the bottom hidden layer and subsequently moving upwards layer per layer

until the top hidden layer has been trained. The layer below the layer being

trained is treated in turn as if it was a visible layer—what it indeed is in the

case of the first hidden layer. This way, each pair of layers in turn is treated

as if it was an RBM. The connections between the pair of layers are taken to

be undirected and symmetric during the pretraining stage.

The layer-wise training is conducted as follows (see, e.g. Bengio, 2009; Cho,

2014). First, the lowest level RBM is trained. That is, the units on the first

hidden layer h1 and on the visible layer x are trained to model a given a

set of training inputs D0 = {x(n) | n = 1, 2, . . . , N}. Training here refers to

estimating the RBM parameters, the weights and biases. The RBM training

can be done for example using the contrastive divergence algorithm. Having

estimated the parameters θ1 of the first (the lowest level) RBM, a set of

samples D1 of the first hidden layer states h1 is drawn from the posteriors

Q(h1 | x(n),θ1), n = 1, 2, . . . , N , for the training of the next level RBM. The

posteriors are denoted with Q(·) because they only approximate the true

posterior that is also dependent on the above hidden layers. The aggregate

posterior Q(h1 | θ1), from which the samples are effectively collected, is an

average

Q(h1 | θ1) =
1

N

N∑
n=1

Q(h1 | x(n),θ1). (25)

The next step in the layer-wise pretraining is to train the second level RBM

by using the set D1, which contains samples of the hidden layer h1 states, as

an input for training the second level RBM. The second level RBM is thus

trained to model the aggregate posterior Q(h1 | θ1) through the samples.

The hidden layers h2 and h1 of the DBN are the hidden and visible layer of

the second level RBM, respectively. That is, the hidden layer of the first level

RBM, h1, is the visible layer of the next level RBM. After training the second

level RBM, and thus having estimated the corresponding RBM parameters

θ2, samples from the aggregate posterior Q(h2 | θ2) are collected for training

the next level RBM. The generative pretraining proceeds subsequently by

18

treating each pair of consecutive hidden layers, hl and hl−1, as an RBM and

training them to model the lower level aggregate posterior Q(hl−1 | θl−1)
until the top layer L is reached.

We can summarize the generative pretraining algorithm for DBNs as follows.

Let use denote here the visible layer x with h0. For each hidden layer hl in

a DBN, repeat the two steps below until a stopping criterion is reached:

1. Draw k samples of each hidden unit hlj , j = 1, 2, . . . , p from the distri-

bution Q(hl−1j | hl−2,θl−1) using the formula (20).

2. Train the l-level RBM, that consists of the hidden layer hl and visible

layer hl−1, using the samples drawn in the step 1 and, as a result,

obtain the parameters θl including the weights and bias units.

Naturally, the first step does not need to be performed for the first hidden

layer h1 as its training set is given and consists of the inputs x(n).

The key motivation in training a DBN with multiple hidden layers is the

following. Given the inputs x, the first level RBM learns the distribution

Q(x | θ1) =
∑
h1

p(h1 | θ1) p(x | h1,θ1), (26)

where p(h1 | θ1) is the prior distribution of the hidden units h1. The first

level RBM can be improved if we can replace the prior p(h1 | θ1) with a better

prior while keeping the input posterior p(x | h1,θ1) fixed. A better prior is

a prior closer to the aggregate posterior Q(h1 | θ1), which is exactly the

distribution that the second level RBM is trained to model. Consequently,

in DBNs the prior p(h1 | θ1) is effectively replaced with a prior so that it is

produced by the second level RBM

p(h1 | θ2) =
∑
h2

p(h1,h2 | θ2), (27)

and likewise for the higher level hidden layers (Cho, 2014). Hinton et al.

(2006) have shown that it is indeed possible to train DBNs one layer at a

time and that training DBNs layer-wise never decreases the log likelihood of

the data under the full model—although, the conditions are in practice often

violated, for example through using CD in training RBMs.

19

4 Conclusions

In this study we have presented the computational principles underlying neu-

ral networks. Traditional multilayer perceptron neural networks and modern

deep neural networks have the exact same network structure and computa-

tions within the networks are performed similarly, once the network training

has been completed. Both MLP and deep neural networks consist of percep-

trons, which are linear computing units. Nonlinear transformations between

layers of perceptrons enable neural networks to be used for modeling nonlin-

ear phenomena.

Deep neural networks differ from MLP neural networks in the network depth,

that is determined by the number of hidden layers in the network. A neural

network with three or more hidden layers is typically considered as a deep

neural network. This difference is conceptual because from a purely com-

putational perspective there is no difference between a MLP network with

three or more hidden layers and a deep neural network with the same number

of hidden layers. However, the size of a neural network, and especially the

number of hidden layers, is an important factor because networks with many

hidden layers are hard to train in practice. This is because the parameter

estimation in the network training phase tends to converge to local optima

resulting in a neural network with poor modeling performance.

The difficulties in training MLP neural networks with several hidden lay-

ers have given rise to the paradigm shift in training deep neural networks.

Instead of directly training the network in a supervised manner through a

standard discriminative learning setup, a generative deep belief network is

trained first and its parameters are used to initialize the parameter estimation

of the corresponding deep neural network. This training approach consist-

ing of two, significantly different phases has enabled successful training of

deep neural networks. In addition to the standard classification and regres-

sion tasks, deep neural networks have been successfully applied to machine

learning tasks in various fields such as natural language processing, computer

vision and information retrieval.

The journey from the first neural networks consisting of parallel perceptrons

to the large-scale multi-layer deep neural networks has taken half a century.

The pinnacle of deep neural networks is twofold. First, more complex ma-

20

chine learning problems can be solved more successfully with deep neural

networks. Second, deep neural networks are pretrained through deep belief

networks without labeled data. In practice, this is a significant advantage

over traditional MLP neural networks which require labeled training data,

because much of the data in the world is unlabeled.

21

References

Alpaydin, E. (2004). Introduction to Machine Learning. The MIT Press,

Cambridge, second edition.

Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti,

R. E., Leite, R. E., Lent, R., and Herculano-Houzel, S. (2009). Equal

Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an

Isometrically Scaled-up Primate Brain. Journal of Comparative Neurology,

513(5):532–541.

Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and

Trends in Machine Learning, 2(1):1–127.

Bengio, Y. and Delalleau, O. (2009). Justifying and Generalizing Contrastive

Divergence. Neural Computation, 21(6):1601–1621.

Bengio, Y., LeCun, Y., et al.(2007). Scaling Learning Algorithms Towards

AI. Large-Scale Kernel Machines, 34(5).

Bishop, C. (2006). Pattern Recognition and Machine Learning, volume 4.

Springer, New York.

Carreira-Perpinan, M. A. and Hinton, G. E. (2005). On Contrastive Diver-

gence Learning. In Proceedings of the Tenth International Workshop on

Artificial Intelligence and Statistics.

Cho, K. (2011). Improved Learning Algorithms for Restricted Boltzmann

Machines. Master’s thesis, Aalto University, School of Science.

Cho, K. (2014). Foundations and Advances in Deep Learning. Doctoral

dissertation, Aalto University.

Fischer, A. and Igel, C. (2014). Training Restricted Boltzmann Machines:

an Introduction. Pattern Recognition, 47(1):25–39.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian

Data Analysis. Chapman & Hall/CRC Press, Boca Raton, Florida, second

edition.

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distribu-

tions, and the Bayesian Restoration of Images. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 6(1):721–741.

22

Glorot, X. and Bengio, Y. (2010). Understanding the Difficulty of Train-

ing Deep Feedforward Neural Networks. In International Conference on

Artificial Intelligence and Statistics.

Hinton, G. (2002). Training Products of Experts by Minimizing Contrastive

Divergence. Neural Computation, 14(8):1771–1800.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior,

A., Vanhoucke, V., Nguyen, P., and Sainath, T. N. (2012). Deep Neural

Networks for Acoustic Modeling in Speech Recognition: The Shared Views

of Four Research Groups. IEEE Signal Processing Magazine, 29(6):82–97.

Hinton, G., Osindero, S., and Teh, Y.-W. (2006). A Fast Learning Algorithm

for Deep Belief Nets. Neural Computation, 18(7):1527–1554.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the Dimensionality

of Data with Neural Networks. Science, 313(5786):504–507.

McCulloch, W. S. and Pitts, W. (1943). A Logical Calculus of the Ideas

Immanent in Nervous Activity. The Bulletin of Mathematical Biophysics,

5(4):115–133.

Minsky, M. and Papert, S. (1969). Perceptrons: An Introduction to Compu-

tational Geometry. The MIT Press, Cambridge.

Neal, R. M. (1992). Connectionist Learning of Belief Networks. Artificial

Intelligence, 56(1):71–113.

Rosenblatt, F. (1958). The Perceptron: a Probabilistic Model for Information

Storage and Organization in the Brain. Psychological Review, 65(6):386–

408.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

Representations by Back-Propagating Errors. Nature, 323(6088):533–536.

Rumelhart, David E and McClelland, James L and PDP Research Group

(1986). Parallel Distributed Processing: Explorations in the Microstruc-

tures of Cognition. MIT Press, Cambridge.

Salakhutdinov, R. and Hinton, G. E. (2009). Deep Boltzmann Machines. In

Proceedings of the Twelfth International Conference on Artificial Intelli-

gence and Statistics (AISTATS’09), volume 5, pages 448–455.

23

Smolensky, P. (1986). Information Processing in Dynamical Systems: Foun-

dations of Harmony Theory. In Parallel Distributed Processing: Explo-

rations in the Microstructure of Cognition, volume 1: foundations. The

MIT Press, Cambridge.

Utgoff, P. E. and Stracuzzi, D. J. (2002). Many-Layered Learning. Neural

Computation, 14(10):2497–2529.

	Abstract
	Contents
	Symbols and Abbreviations
	1 Introduction
	2 Neural Networks
	2.1 Perceptrons
	2.2 Neural Networks—Networks of Perceptrons
	2.3 Training Neural Networks
	2.3.1 Backpropagation

	3 Deep Neural Networks
	3.1 Restricted Boltzmann Machines
	3.2 Deep Belief Networks—Networks of RBMs
	3.3 Training Deep Neural Networks
	3.3.1 Training Restricted Boltzmann Machines
	3.3.2 Generative Pretraining of Deep Belief Networks

	4 Conclusions
	References

