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1 Introduction
Multi-objective simulation-optimization (MOSO) problems typically involve highly
complex systems, uncertainty, and computational intensity, and are of high prac-
tical relevance judging from the large number of applications that have surfaced
thus far. The feature that distinguishes MOSO from traditional multi-objective op-
timization is that the objective functions must be evaluated using a stochastic sim-
ulation model of the system under consideration. In general, MOSO problems are
challenging because 1) there is typically no unique optimal solution with respect
to all objectives, 2) uncertainty about the true values of the objective functions is
present, and 3) evaluation of the objective functions is tedious when the simula-
tion model is complex. MOSO problems can be formulated for both continuous
and discrete decision variables, and techniques for such problems are surveyed
in (Evans, Stuckman, and Mollaghasemi 1991, Rosen, Harmonosky, and Traband
2008). In this paper, MOSO problems with only continuous decision variables are
considered.

The solution to a MOSO problem is represented by a set of non-dominated
solutions that approximates the true Pareto front of the problem. A solution is
dominated if another solution is at least as good with respect to all objectives
and strictly better with respect to at least one objective. Determining the non-
dominated solution set allows the decision maker’s (DM) preferences to be in-
corporated a posteriori by selecting only the solutions that satisfy these prefer-
ences. While a number of techniques for determining the non-dominated solu-
tions to deterministic multi-objective problems that are based on evolutionary al-
gorithms have been developed, they treat the values of the objective functions,
which are estimated during optimization, as deterministic and do not explicitly
take into account uncertainty. However, techniques that are specifically designed
for simulation-optimization have also appeared recently (e.g., Goh and Tan 2007,
Lee et al. 2008, Syberfeldt et al. 2010, Mattila, Virtanen, and Hämäläinen 2012).

In cases where the DM is only interested in solutions in a subset of the entire
Pareto front, a common approach for incorporating the DM’s preferences prior to
optimization is to aggregate the individual objective functions into a single ob-
jective function, transforming the problem into a single-objective one that can
be solved with single-objective simulation-optimization techniques. Among the
benefits of this approach is that only solutions that are of interest to the DM are ob-
tained. In addition, the computational requirements of the problem are expected to
be more manageable. The most common approach is to use a weighted aggrega-
tion of objectives (e.g., Persson et al. 2006). Other forms of preference statements
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include specifying goals or targets for the objectives (Baesler and Sepulveda 2001)
or, similarly, a reference point (Siegmund et al. 2012). However, the difficulty in
most of the existing approaches where preferences are incorporated into the op-
timization method itself is that very detailed preference information is required
from the DM. The DM may, for instance, have to provide exact weights for sev-
eral objectives. Furthermore, in a group decision-making context exact weights
might be very difficult to determine. In short, providing complete preference in-
formation is often non-trivial (Chen and Lee 2010) or even impossible.

This paper presents a new algorithm, Simulated Annealing with Incomplete
Preference Information (SA-IPI), for MOSO with continuous decision variables.
SA-IPI is based on a multi-objective simulated annealing (SA) algorithm (Mattila,
Virtanen, and Hämäläinen 2012) and incorporates a multi-attribute utility (MAU)
function for the aggregation of objective functions under incomplete information.
The multi-objective SA algorithm that SA-IPI is based on was designed for de-
termining non-dominated solutions to MOSO problems and was chosen as the
search method because it was proven to be efficient compared with competing
EA’s in extensive tests (Mattila, Virtanen, and Hämäläinen 2012). The algorithm
assumes incomplete information is expressed as a set of feasible weights for the
MAU function that reflect the relative importance of the objectives. Candidate so-
lutions are then compared via a pairwise dominance relation (Weber 1987) which
states that a solution dominates another one if its utility — as determined by the
MAU function — is higher across all feasible weights. Consequently, SA-IPI fo-
cuses the search on the non-dominated solutions that are of interest to the DM,
thereby resulting in a subset of the entire non-dominated set that is consistent
with the DM’s preferences. The benefits of using SA-IPI are 1) computational
efficiency compared with approaches that focus on the entire non-dominated set
even though the objective is to find a smaller subset, and 2) relaxed requirements
regarding information required from the DM compared with MOSO approaches
that require complete preference information.

Multi-objective optimization techniques that consider incomplete preference
information are mostly designed for deterministic settings; Branke (2008) presents
a survey of such techniques. For example, Quan et al. (2007) have used a MAU
function where the weights are described through a feasible set in combination
with an EA for a deterministic problem. Within MOSO, on the other hand, in-
complete preference information has only been used in the context of ranking and
selection (R&S), where a limited computing budget is allocated to a finite set of
solutions so that the best solution is identified with high confidence. Both Branke
and Gamer (2007) and Frazier and Kazachkov (2011) determine probability distri-
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butions for the weights of the objectives and calculate the expected utility of each
solution over the distributions. To the best of the authors’ knowledge, the existing
literature on MOSO has not considered incomplete preference information in a
way described in this paper. The benefits of the presented approach are illustrated
through a series of test problems.

The paper is structured as follows. In section 2, the original SA algorithm
for stochastic multi-objective problems is outlined and incomplete information
is incorporated to arrive at the SA-IPI algorithm. In section 3, the experimental
setup along with the performance indicators and test problems which are used
for the evaluation and validation of SA-IPI against the original SA algorithm are
presented. The results of the experiments are presented in section 4. Conclusions
from the results of the experiment are drawn in section 5.
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2 SA Algorithm With Incomplete Preference Infor-
mation (SA-IPI)

The SA algorithm attempts to find the approximate Pareto front, i.e., a set of non-
dominated solutions for the problem

min
x∈Θ

( f1(x), . . . , fH(x)), (1)

where fi(x) are the objective functions, x = [x1, . . . ,xn] is the decision variable
vector, and Θ is the set of feasible decision variable vectors. The values of the
objective functions fi(x) are obtained via simulation and can only be estimated
with noise. In this paper, i.i.d. normal noise terms are assumed so that fi(x)+
ωi where ωi ∼ N(0,σ2

i ) is observed. The decision variables are assumed to be
constrained by simple linear upper and lower bounds, i.e., li < xi < ui so that Θ

is a hyperrectangle. The goal of optimization is to find a set of non-dominated
solutions to problem (1) that satisfy the DM’s preferences which are expressed as
intervals for the weights of the objective functions in the form wi ∈ [wi,l,wi,u].

2.1 Steps of SA-IPI
In this section, the steps of SA-IPI are outlined and a description of the perfor-
mance measure it uses to evaluate candidate solutions is provided. Other features
of the algorithm that are left unchanged such as perturbation policy are left outside
consideration, and the reader is asked to refer to the original description of the al-
gorithm (Mattila, Virtanen, and Hämäläinen 2012). The steps of the algorithm are
as follows:

0. Generate initial solution x̃ by sampling each element x̃i from a uniform dis-
tribution over the feasible region. Generate M samples fi(x̃) +ωi of the
objective functions fi(x̃). Initialize the set of non-dominated solutions S
with maximum size N and add the current solution to S so that S = {x̃}.

1. Perturb current solution so that x́ = perturb(x̃) and generate M samples
fi(x́)+ωi of each objective function.

2. Calculate the performance measure of the current solution G(x̃|S, x́) and the
candidate solution G(x́|S, x̃). If G(x́|S, x̃)< G(x̃|S, x́), accept the candidate
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solution as the new current solution, otherwise accept the candidate solution
as the current solution with probability

p = e−
G(x́|S,x̃)−G(x̃|S,x́)

T ,

where T is the temperature of the SA algorithm.

3. If the size of S is less than N, add x́ into S. Otherwise if G(x́|S, x̃) <
max
x∈S

G(x|S\x, x́), replace the x in S with the highest performance measure

with x́.

4. Go back to step 1 unless maximum number of iterations is reached. Return
S as the solution set.

The performance measure for the candidate solution in the algorithm outlined
above is defined as the sum of probabilities that the candidate solution is domi-
nated by the members of the non-dominated set S and the current solution x̃, or
more formally,

G(x́|S, x̃) = ∑
x∈S∪x̃

P(x� x́), (2)

and similarly for the current solution

G(x̃|S, x́) = ∑
x∈S∪x́\x̃

P(x� x̃). (3)

Details on how to calculate the pairwise probabilities of dominance P(x� x́) and
P(x � x̃) with noisy objective functions and under incomplete information are
provided in the next section.

2.2 Incorporating incomplete information
Incomplete preference information is incorporated to the algorithm through an
additive multi-attribute utility function (Keeney and Raiffa 1976, von Winterfeldt
and Edwards 1986) of the form

U(x,w) =
H

∑
i=1

wiui( fi(x)), (4)
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where x is the decision variable vector, fi(x) are the objective functions, ui are the
individual utility functions the DM has assigned for the objective functions, and
wi are the weights that reflect the DM’s preferences for each individual objective.
With noisy objective functions the values fi(x) cannot be observed directly and
expected values must be obtained by sampling. Incomplete information is allowed
by assuming the values of the weights are uniformly distributed within an interval
so that wi ∈ [wi,l,wi,u] instead of requiring exact values to be specified.

Pairwise dominance relations between solutions are then determined over the
feasible weights; a solution x pairwise dominates solution y if

U(x,w)≥U(y,w)∀w ∈W, (5)

where W is the set of feasible weights. At least one of the inequalities has to be
strict. Since the inequality constraints for w are linear (i.e., W is convex), and
the MAU function is linear with respect to wi, it is sufficient to evaluate the above
condition only in the extreme points of W. Consequently, the transformed problem

max
x∈S

(U(x,w1), . . . ,U(x,wK)) (6)

is obtained, where S is the set of solutions under consideration and w1, . . . ,wK
are the extreme points in W. Because the utilities U(x,wi) in each of the extreme
points of W are linear combinations of the utilities of the same objective function
values ui( fi(x)), it follows that the aggregated utilities U(x,wi) are multivariate
normally distributed. The estimated means Ûx,i and the elements σ̂x,i j of the co-
variance matrix Σ̂x/M are obtained from

Ûx,i =
1
M

M

∑
n=1

Un(x,wi) (7)

and

σ̂x,i j =
1

M−1

M

∑
n=1

(Un(x,wi)−Ûi)(Un(x,w j)−Û j), (8)

where M is the number of samples, Un(x,wi) are the observed realizations of
U(x,wi), and i, j ∈ {1, . . . ,K}. The differences U(y,wi)−U(x,wi) follow a mul-
tivariate normal distribution with mean Ûy− Ûx = [Ûy,1−Ûx,1, . . . ,Ûy,K −Ûx,K]

and covariance matrix Σ̂ = Σ̂x
M +

Σ̂y
M . The probability that solution x dominates so-

lution y, i.e., the probability that the differences are less than zero, is calculated
from the cumulative multivariate normal distribution function:
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P(x� y) = F
(

0, µ̂y− µ̂x,
Σ̂x
M

+
Σ̂y

M

)
. (9)

In the above equation the point 0 at which the cumulative distribution is evaluated
is a zero vector. The performance measure for the candidate and current solutions
are now obtained from equations (2) and (3).

In practice, evaluating the cumulative values of the multivariate normal distri-
bution such as in equation (10) is computationally expensive especially if more
objective functions are introduced and the number of dimensions grows large. As
the method scales badly with the number of objective functions, calculating the
exact probability would only be feasible in cases where the cost of simulation
(i.e., evaluating the objective function) is high relative to the cost of evaluating the
cumulative distribution values. Costly computation is avoided, however, if lower
or upper bounds for the probability of dominance are used instead of the exact
probabilities.

One upper bound for the pairwise probability of dominance across all feasi-
ble weights W is the minimum of the pairwise probabilities of dominance in the
extreme points wi of W, or more formally

P(x� y) =
Û(x,wi)−Û(y,wi)√

s2
x+s2

y
M

, (10)

where Û and s2
i are the estimated means and variances respectively. A lower

bound, on the other hand, is found via the Bonferroni inequality. If Ei is the event
of dominance in extreme point wi, then the lower bound for the intersection of Ei
and thus for the probability of dominance across all extreme points is:

P

(
n⋃

i=1

(1−Ei)

)
≤

n

∑
i=1

(1−P(Ei))

⇔

P

(
n⋂

i=1

Ei

)
≥ 1−

n

∑
i=1

(1−P(Ei)). (11)

The decision then comes down to whether to use the upper or lower bound for
calculations. In this experiment the upper bound is chosen as the estimator for
the pairwise probability of dominance because the lower bound — being obtained
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through the Bonferroni inequality — might be too conservative for estimation
purposes.
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3 Experimental Setup
The performance of SA-IPI is validated by comparing it against the original SA
algorithm (Mattila, Virtanen, and Hämäläinen 2012) over 16 test problems in 3
different test suites. This section describes the test problems and performance
indicators that are used for evaluating the algorithms.

3.1 Test problems
The test cases that are chosen for validating SA-IPI include problems ZDT1,
ZDT2, ZDT3, ZDT4, and ZDT6 from the ZDT test suite by (Zitzler, Deb, and
Thiele 2000); problems DTLZ1 to DTLZ6 from the DTLZ test suite (Deb et al.
2002); and five problems as suggested by (van Veldhuizen 1999) which are re-
named as MOP1, MOP2, MOP3, MOP4, and MOP6, and collectively as the
MOP suite. The test problems cover a wide range of scenarios, such as non-
uniform distributions of non-dominated solutions, local optima, and disconnected
non-dominated sets, and as such are well suited for testing the capability of a
multi-objective algorithm to handle difficulties.

Each test problem is of the same form (1) as presented in section 2. The values
of the objective functions fi(x) are assumed to be affected by i.i.d. normal noise so
that fi(x)+ωi where ωi ∼ N(0,σ2

i ) is observed. In all test cases the noise level is
set to 20% of the maximum absolute values of the objective functions in the actual
non-dominated set. The number of objective functions is H = 2 for all problems in
the ZDT and MOP suites and H = 3 for the DTLZ suite. The objective functions
f1, . . . , fH as well as the number of decision variables and their lower bounds are
presented for each problem in Table ??. For the actual non-dominated sets of the
test problems the reader may refer to the papers in which each test suite appears
(van Veldhuizen 1999; Zitzler, Deb, and Thiele 2000; Deb et al. 2002).

The test problems are divided into three types: 1) convex problems (ZDT1,
ZDT4, MOP1, MOP3), 2) concave problems (ZDT2, ZDT6, MOP2, DTLZ2,
DTLZ3, DTLZ4), and 3) problems that are neither (ZDT3, MOP4, MOP6, DTLZ1,
DTLZ5, DTLZ6). The differentiation between convex and concave problems is
relevant in our experiment because the actual non-dominated set that is consistent
with the DM’s preferences degenerates into a single point in concave problems.
This is due to the nature of the problem as well as due to the weights used in
the MAU function, and while it does not cause problems with optimization, it
makes the use of certain performance indicators such as hypervolume ratio non-
informative.
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3.2 Performance indicators for the algorithms
In the experiment, two performance indicators that measure the distance of solu-
tions to the actual non-dominated set as well as the diversity and distribution of
the solutions are used to measure the quality of obtained non-dominated solutions.
The values of the performance indicators are calculated from the noiseless objec-
tive function values to ensure consistency of results. Also, only the solutions that
are pairwise non-dominated will be extracted for calculation of performance indi-
cators from the non-dominated solution sets that are maintained by the algorithms
since the other solutions are not relevant and it would only seem reasonable they
should not affect the assessment of the quality of the algorithm’s output.

The first performance indicator to be used is generational distance, denoted
with IGD, which measures the distance of the non-dominated solutions to the ac-
tual non-dominated set (van Veldhuizen 1999). Generational distance is defined
as

IGD =

(
∑x∈S d2

x
)1/2

|S|
, (12)

where dx is the minimum Euclidean distance of a non-dominated solution x ∈ S
to the actual non-dominated set. Smaller values indicate better performance; a
zero value would indicate that all the non-dominated solutions generated by the
algorithm are part of the actual non-dominated set.

The second performance indicator is hypervolume ratio, denoted with IHV ,
which measures the general quality of the non-dominated solutions (van Veld-
huizen 1999). Hypervolume ratio is the ratio of the volume in the objective space
dominated by the generated set of non-dominated solutions S and the volume dom-
inated by the actual non-dominated set ST . For the calculation of the indicator, two
reference points are chosen that limit the part of the objective function space under
consideration and guarantee that the volumes remain finite. The reference points
are determined from the boundary values of the objective functions in the ac-
tual non-dominated set, i.e., ( f T

1 , . . . , f T
H) and ( f T

1 , . . . , f T
H) where the under- and

overlines represent minimum and maximum values respectively. The Cartesian
product Z = [ f T

1 , f T
1 ]× . . .× [ f T

H , f T
H ] is used to denote the hyperrectangle that is

constrained by these points and contains ST . Formally, hypervolume ratio is then
expressed as

IHV =

∫
Z 1(∃y ∈ S,y� z)dz∫

Z 1(∃y ∈ ST ,y� z)dz
, (13)
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where 1(·) is an indicator function. The numerator represents the volume domi-
nated by S and the denominator the volume dominated by ST . Higher values indi-
cate better performance; a value of 1 would mean all the non-dominated solutions
generated by the algorithm are part of the actual non-dominated set. Because the
value of the integral in Equation (13) cannot be calculated analytically, it is ap-
proximated in the experiment with an evenly spaced grid of sample points. A
dense grid, i.e., a large sample size is used to obtain an accurate approximation.

3.3 Reference method
The original SA algorithm (Mattila, Virtanen, and Hämäläinen 2012) is used as
a reference method for SA-IPI. Because the original algorithm does not use any
preference information to direct its search and instead attempts to find an ap-
proximation for the entire Pareto front, the solution set that is returned is spread
over a wider area than that of SA-IPI, thereby making direct comparison diffi-
cult. Therefore, only the solutions that are pairwise non-dominated under the
assumed preference information are selected from the solution sets of both al-
gorithms for comparison. Although this might tilt the scales slightly in favor of
SA-IPI which will have more solutions concentrated in the area of the partial ac-
tual non-dominated set that is under consideration, it will make comparisons more
consistent. Finally, performance indicators are computed for both algorithms with
respect to the partial non-dominated set.

3.4 Preference information
Essentially, there are two ways preference information can be included in the ex-
periment. The first one is through specifying the intervals for the weights of the
MAU function, and the second one is through the specification of the univariate
utility functions in the MAU function. Because the scale on which the values of
an objective function are expressed is also an implicit preference statement and
thus affects optimization results, the univariate objective functions are all scaled
so that ui( fi(x)) ∈ [0,1]. For the scaling parameter several alternatives present
themselves. The maximum value of the objective function in the space of feasible
decision vectors Θ is one such alternative, as is dynamic scaling by the maximum
values of the objective functions in the solution set maintained by the algorithm.
However, these alternatives should cause problems in convergence when one or
more of the objective functions are unbounded since some of the initial solutions
might be quite far from the actual non-dominated set in some of the objectives.
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Therefore, the univariate utility functions are scaled by a multiple of the maximum
value of the corresponding objective function in the actual non-dominated set, i.e.,
so that ui( fi(x)) =− fi(x)

n f T
i

where n∈Z+ is sufficiently large. In the experiment the

MAU function is defined as

U(x,w) =
H

∑
i=1
−wi fi(x)

n f T
i

. (14)

where n = 100.
The problems are solved with three different preference weight sets. The

weight sets used for the two-objective test problems (ZDT and MOP suites) are
chosen so that 1) one objective is defined as the primary objective, 2) tighter
bounds are chosen for that objective to express how much more important it is,
and 3) a narrow interval is given for that objective indicating high degree of con-
fidence on its approximate value. More specifically, the following weight sets are
chosen: w1 ∈ [0.5,1.0], w1 ∈ [0.6,0.9], and w1 ∈ [0.7,0.8] with w2 = 1−w1 in
all cases. For the three objective problems, the following weight sets were chosen
in an analogous fashion: w1 ∈ [0.5,1.0] and w2 ∈ [0.25,0.5], w1 ∈ [0.6,0.9] and
w2 ∈ [0.2,0.4], and w1 ∈ [0.7,0.8] and w2 ∈ [0.15,0.3], with w3 = 1−w1−w2 in
all cases.
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4 Results
In this section, the performance of SA-IPI and the original SA algorithm (Mattila,
Virtanen, and Hämäläinen 2012) are compared over the three test problem suites
described in the previous section (ZDT, MOP, and DTLZ) with two different per-
formance indicators, (12) and (13). The results are discussed separately for the
three problem types: 1) convex, 2) concave, and 3) other type of problems.

The following parameters for both the original SA algorithm and SA-IPI are
used in the experiment. The maximum perturbations δ1, . . . ,δn are δi = 1 for the
ZDT test suite, and 1/5 of the range of each decision variable for the DTLZ and
MOP suites. As for the number of objective function samples, m = 20 is used
for the ZDT and DTLZ suites and m = 5 for the MOP suite. Otherwise, T = 1,
N = 100 and M = 30 are used in all cases. Fixed computing budgets are used
so that the total number of objective function samples amount to 50000 for both
algorithms. In all test problems the noise level is set to 20% of the maximum
absolute values of the objective functions in the actual non-dominated set. In brief,
all parameter values are defined as in (Mattila, Virtanen, and Hämäläinen 2012)
excluding the weight sets and univariate utility functions which are specified in
section 3.4.

4.1 Convex problems
The convex problem set consists of the four problems ZDT1, ZDT4, MOP1, and
MOP3. These problems are the most straightforward or ”easy” in the sense that
the entire actual non-dominated set and partial actual non-dominated set that is
consistent with the DM’s preferences are both smooth and continuous. Conse-
quently, generational distance and hypervolume ratio can both be used to assess
the quality of solutions for all four test problems. The results of the tests are
summarized in Table 1.

4.2 Concave problems
The concave problem set consists of the problems ZDT2, ZDT6, MOP2, DTLZ2,
DTLZ3, and DTLZ4. The concavity of the actual non-dominated set means the
partial non-dominated set that is consistent with the DM’s preferences degenerates
into a single point. Therefore, only generational distance should be taken into
account in assessing the performance of the algorithm in concave problems. The
results of the tests are summarized in Table 2.
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Table 1: The table depicts the medians of the performance indicators that are
calculated from the pairwise non-dominated solutions. A greyed out value indi-
cates that the algorithm is statistically significantly better, whereas a bold value
indicates it is worse at a 5% confidence level.

Preference weights and performance indicators
Problem and w1 ∈ [0.5,1.0] w1 ∈ [0.6,0.9] w1 ∈ [0.7,0.8]
algorithm IGD IHV IGD IHV IGD IHV

ZDT1
SA-IPI 0.032 0.689 0.014 0.436 0.013 0.000
SA 0.033 0.738 0.020 0.454 0.030 0.000

ZDT4
SA-IPI 0.277 0.133 0.507 0.000 0.516 0.000
SA 0.523 0.021 0.365 0.000 0.167 0.000

MOP1
SA-IPI 0.005 0.788 0.008 0.702 0.047 0.327
SA 0.003 0.853 0.005 0.690 0.014 0.439

MOP3
SA-IPI 0.015 0.896 0.006 1.057 0.013 NaN
SA 0.067 0.889 0.013 0.873 0.034 NaN

4.3 Other problems
The final problem set consists of problems where the actual non-dominated set
is either discontinuous and/or might locally be either convex or concave. Conse-
quently, the values or the hypervolume ratio might not be indicative of algorithm
performance in some problems. The results of the tests are summarized in Table
3.

4.4 Lessons
Based on the results in Tables 1-3, the median values of the performance indica-
tors are not better for SA-IPI than for the reference algorithm at a 5% confidence
level. It would seem that the test problems are not suitable for evaluating the per-
formance of the algorithm. For example, in test problem ZDT1, the first objective
function is solely determined by the first decision variable; however, the value of
the second objective function depends on all of the remaining 29 decision vari-
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ables. Therefore, preference information can only be used in guiding the selection
of the first decision variable, whereas it offers no additional benefit when it comes
to selecting the values of the remaining 29 variables. To demonstrate the benefits
of the SA-IPI algorithm, a different set of test problems should be used where the
above problem does not exist.
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Table 2: The table depicts the medians of the performance indicators that are
calculated from the pairwise non-dominated solutions. A greyed out value indi-
cates that the algorithm is statistically significantly better, whereas a bold value
indicates it is worse at a 5% confidence level.

Preference weights and performance indicators
Problem and w1 ∈ [0.5,1.0] w1 ∈ [0.6,0.9] w1 ∈ [0.7,0.8]
algorithm IGD IHV IGD IHV IGD IHV

ZDT2
SA-IPI 0.108 0.000 0.094 0.000 0.083 0.000
SA 0.097 0.000 0.069 0.000 0.078 0.000

ZDT6
SA-IPI 0.350 0.000 0.505 0.000 0.652 0.000
SA 0.334 0.000 0.377 0.000 0.531 0.000

MOP2
SA-IPI 0.705 NaN 0.991 NaN 0.992 NaN
SA 0.538 NaN 0.981 NaN 0.994 NaN

DTLZ2
SA-IPI 0.050 0.000 0.064 0.000 0.111 0.000
SA 0.181 0.000 0.264 0.000 0.184 0.000

DTLZ3
SA-IPI 6.394 0.000 5.404 0.000 4.325 0.000
SA 4.489 0.000 3.346 0.000 3.398 0.000

DTLZ4
SA-IPI 0.055 0.000 0.075 0.000 0.079 0.000
SA 0.231 0.000 0.199 0.000 0.068 0.000
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Table 3: The table depicts the medians of the performance indicators that are
calculated from the pairwise non-dominated solutions. A greyed out value indi-
cates that the algorithm is statistically significantly better, whereas a bold value
indicates it is worse at a 5% confidence level.

Preference weights and performance indicators
Problem and w1 ∈ [0.5,1.0] w1 ∈ [0.6,0.9] w1 ∈ [0.7,0.8]
algorithm IGD IHV IGD IHV IGD IHV

ZDT3
SA-IPI 0.069 0.691 0.053 0.326 0.059 0.000
SA 0.060 0.729 0.051 0.598 0.075 0.000

MOP4
SA-IPI 0.971 0.000 0.952 0.000 1.218 0.000
SA 0.037 0.902 0.249 0.000 0.621 0.000

MOP6
SA-IPI 0.000 0.925 0.000 0.000 0.000 0.000
SA 0.000 0.976 0.000 0.000 0.000 0.000

DTLZ1
SA-IPI 0.769 0.000 0.681 0.000 0.526 0.000
SA 0.368 0.000 0.156 0.000 0.234 0.000

DTLZ5
SA-IPI 0.102 0.000 0.099 0.000 0.154 0.000
SA 0.022 0.000 0.020 0.000 0.030 0.000

DTLZ6
SA-IPI 0.317 0.000 0.745 0.000 1.246 0.000
SA 0.046 0.000 0.057 0.000 0.070 0.000
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5 Conclusions
This paper presented a new algorithm, SA-IPI, for MOSO problems with incom-
plete preference information. SA-IPI is implemented on a state-of-the-art SA al-
gorithm for multi-objective noisy problems (Mattila, Virtanen, and Hämäläinen
2012). As a novel feature, SA-IPI incorporates incomplete preference informa-
tion by requiring intervals for the weights of an an additive MAU function to be
specified. The algorithm then ranks candidate solutions based on the probability
of pairwise dominance across all feasible weights.

The algorithm was validated on a total of 16 different test problems in three
different test suites with 3 different weight sets. Two performance indicators —
generational distance and hypervolume ratio — were used in evaluating the per-
formance of SA-IPI compared to the original SA algorithm that does not utilize
preference information. SA-IPI was found not to perform better in the tests than
the original algorithm in terms of both generational distance and hypervolume ra-
tio when the partial actual non-dominated solution set that was consistent with
given preferences was used as the reference. This was reasoned to be due to the
nature of the test problems rather than due to a problem with the method itself —
a different set of test problems would be required to bring out the benefits of the
algorithm. The algorithm therefore still needs further validation.

As the method used for incorporating incomplete preference information to the
algorithm is, in fact, an adapted multi-criteria decision making method and thus
not specific to simulated annealing, it could very well be extended to be used in
other alternative techniques such as evolutionary algorithms. Considering further
lines of development, only continuous decision variables were considered in this
experiment even though discrete decision variables are very common in real world
applications.
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