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1 Introduction

People make decisions continuously, whether small, like which route to take
to work, or big, like where to live. In the making of every decision, some
analysis is involved. The decision maker must consider possible outcomes of
di�erent alternatives and strive to make the best decision according to his or
her preferences.

Good decisions are not always easy to make. Preferences can be uncertain,
outcomes unknown or there could be too many attributes or alternatives
to even consider everything thoroughly. In some decision problems, it is
important to �nd the best solution. For instance, when considering the
number and locations of �re stations in a city, there are people's lives at
stake.

To help �nd the preferred solution, there exist decision-making methods (see,
e.g., Hwang and Yoon (2012)) that identify and assess important aspects of a
decision and use mathematical models to �nd the most advantageous alterna-
tive. This study focuses on spatial decision analysis (see, e.g., Malczewski and
Rinner (2015)) that takes incomplete information (see, e.g., Weber (1987))
into account. Many decisions have a spatial context, like the �re station ex-
ample above. Consequences can vary across a geographic region depending
on the chosen alternative.

In spatial decision making, data over a geographic region is used. In other
words decision making occurs in the geographic information systems (GIS)
context. GIS provides tools for information acquisition, storage, modeling,
analysis, and management and integrates them in applications that solve
problems related to spatial information (Chen, 2010). GIS is widely used
in support of research in geography because it can associate locations in
space-time with properties such as population density, temperature and water
quality (Goodchild, 2009). The use and development of GIS is discussed, for
instance, by Obermeyer and Pinto (2007) and Goodchild (1991) and the use
of it in multicriteria decision making (MCDM) for instance by Jankowski
(1995, 2006) and Malczewski and Rinner (2015).

Performances of alternatives are measured with attributes (see French (1988);
Hwang and Yoon (2012)). For example, an attribute could be 'the time it
takes for �re �ghters to come from the nearest station' and the level of that
attribute can be '5 minutes'. In decisions, di�erent alternatives that can be
selected have di�erent outcomes that depend on the levels of the attributes
and the GIS data. Those levels may depend on the alternative that is se-
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lected, the geographic location or the time instant that is observed, or some or
all of them. Total value of a decision can be computed by aggregating valued
outcomes that are weighted spatially, temporally, and attribute speci�cally
(e.g., Simon et al. (2013)).

Most multiattribute decision analysis methods (e.g., Hwang and Yoon (2012))
are based on the assumption that there exist complete information about
the model parameters. In practice this is challenging to achieve because
decision maker's (DM) preferences rarely are precisely known. For instance,
when the �re station example is considered, the DM should know exactly the
importance of rapid action in every location whereas when using the model
that accepts incomplete information (e.g., Weber (1987); Simon et al. (2013))
the DM has to provide only constraints for the weights in some regions, which
is much more realistic.

With incomplete information it is not possible to compute exact values of
di�erent alternatives but their minimum and maximum values can be found,
which can be used to limit the number of relevant alternatives through dom-
inance (see Eisenführ et al. (2010); Kirkwood and Sarin (1985)). When dom-
inance relations are found with the extreme values, dominated alternatives
can be discarded, for non-dominated alternatives are preferred to the domi-
nated ones.

This study presents spatial preference decision models and their extension to
function with incomplete preference information. An example that illustrates
the computation of non-dominated alternatives with incomplete information
is constructed with a tool developed for the models introduced in this study.
The implemented tool computes the values of di�erent alternatives and �nds
the non-dominated alternatives.

The study is structured as follows. Section 2 presents the decision anal-
ysis through preference models and dominance. Di�erent cases of spatial
preference models with spatial, attribute, and temporal weights allowing in-
formation to be incomplete are reviewed in Section 3, and the experimental
setup in Section 4 applies some of these models by illustrating the problem of
choosing best �re station locations in Espoo. Section 5 provides conclusions.

2 Spatial decision analysis

The basis for spatial decision analysis is discussed in this section. The concept
of preference and its connection to value functions are �rst de�ned. The ad-



3

ditive multiattribute value function is then presented, after which preference
models with a spatial aspect and the concept of dominance are introduced.

2.1 Preference models

Preference models are used to determine the relative desirability of alter-
natives. Alternatives z can be for example vectors or functions and z ∈ Z,
where Z is the set of all possible alternatives. In practice there exists a subset
Z ′ ⊂ Z of feasible alternatives, among which the best alternative is sought.
For more information about preference modeling, for instance Öztürké et al.
(2005) and Keeney and Rai�a (1993) provide overview of the subject.

The DM's preferences are described by the relation � so that

z � z′,

which means that the DM weakly prefers object z to object z′. In other
words, she holds z to be at least as good as z′ (French, 1988).

Preferences can be presented in mathematical form by a value function but
there are some conditions that must be met for a value function to exist.
Two axioms are always needed:

A1: � is complete

For any z, z′ ∈ Z, either z � z′ or z′ � z or both,

A2: � is transitive

If z � z′ and z′ � z′′ then z � z′′ .

Depending on the value function, there exists also other axioms (see, e.g.,
Simon et al. (2013)) but they are not discussed in this paper. If the axioms
hold, there exists a value function V (z) such that

V (z) ≥ V (z′)⇔ z � z′, (1)

which means that the alternative with the bigger value is preferred to the
alternative with the smaller value.
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2.2 Additive multiattribute value function

Often decision making requires multiple attributes (for more about multi-
attribute decision making, see, e.g., Hwang and Yoon (2012); Keeney and
Rai�a (1993)). To determine an additive multiattribute value function, it
is assumed that z is a vector, where each element zi represents the speci�c
level of the attribute Zi, i = 1, 2, ..., n. For every attribute Zi, there exists
a value function vi(zi) ∈ [0, 1]. Alternatives have di�erent outcomes, and
the preferences over the set of outcomes can be presented by aggregating the
weighted values of outcomes. If the attributes are mutually preferentially
independent (Dyer, 2005) and each attribute is di�erence independent of the
others (Dyer, 2005), the aggregation function is an additive value function
V (z1, z2, ..., zn) of the form

V (z) =
n∑
i=1

wivi(zi), (2)

where w1, w2, ..., wn are non-negative weights and vi is a value function over
the ith attribute. Weights are scaled so that they add up to one

∑n
i=1wi = 1

(Keeney and Rai�a, 1993; Salo and Hämäläinen, 2010).

2.3 Spatial preference models

Outcomes of decision alternatives are modeled across the region in spatial
decision making, and both the alternative that is selected and the spatial
location can have an impact on the levels of the attributes. The discrete pref-
erence model assumes that the region of interest S is �nite, that is, it consists
of a speci�c number of subregions that are labeled 1, 2, ..., n. Attribute levels
do no vary within any subregion. The non-discrete model assumes that S is
in�nite, i.e., it consists of an in�nite number of locations. Locations are dense
and the model is continuous so the value can be computed everywhere within
the region of interest. The consequence in the location s ∈ S is determined
by a function z(s). For both discrete and non-discrete models, preferences
can be described by a preference relation (1).

For the spatial preference model, there exists a value function (Simon et al.,
2013) which can be presented as a discrete (3a) or a non-discrete (3b) function
of the form
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V (z) =
n∑
i=1

a(si)v(z(si)), (3a)

V (z) =

∫
S

a(s)v(z(s)) ds, (3b)

where v(z(s)) is a value function over z(s), z(s) is a speci�c level of Z in the
location s and a(s) is a non-negative spatial weight in the location s ∈ S.
In the discrete model, si is a location on subregion i. In the discrete model,∑

i ai = 1 and in the non-discrete model
∫
S
a(s)ds = 1.

Some decisions require multiple attributes so the single-attribute preference
model has to be expanded to a multiattribute model. One or more of these
attributes can vary geographically. In this case, v in Equations (3a, 3b) is
altered to a multiattribute value function, and there exists an additive value
function V (z) of the form (Simon et al., 2013)

V (z) =
n∑
i=1

a(si)
m∑
j=1

bjvj(z
j(si)), (4a)

V (z) =

∫
S

a(s)
m∑
j=1

bjvj(z
j(s)) ds. (4b)

In this model, z represents a speci�ed outcome where z(s) = [z1(s), ..., zm(s)]
and m is the number of attributes. z ∈ Z where Z represents the set of out-
comes. Consequence in the location s ∈ S for the jth attribute is determined
by a function zj(s) and a is a function so that a(s) is a spatial weight in lo-
cation s ∈ S. In the discrete model, si is a location on subregion i. vj is
a single-attribute value function for the jth attribute and bj is a positive
weight for the jth attribute so that

∑
j bj = 1.

2.4 Dominance

Complete preference information is discussed when the DM can provide exact
spatial, attribute and temporal weights. However, there exist many situations
when preference information is incomplete. For example, the DM can be a
group of people who do not agree on preferences, the knowledge or experience
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of the subject can be imperfect, the DM has not made up her mind or she
cannot for some other reason state her preferences, i.e., give exact weights
(e.g., Weber (1987); Öztürké et al. (2005)). In that case a set of weights A
consists of all the weights a that are feasible within the constraints the DM
is able to provide. Methods to work with incomplete preference information
are discussed in Section 3.

Even with incomplete preference information, one alternative can sometimes
be identi�ed as superior to another through dominance. Two di�erent types
of dominance relations between alternatives are considered in this study, ab-
solute dominance and pairwise dominance (Eisenführ et al., 2010). Pairwise
dominance is always followed when absolute dominance exists. Absolute
dominance has two conditions:

 min
a∈A

V (z) ≥ max
a∈A

V (z′),

max
a∈A

V (z) > min
a∈A

V (z′),
(5)

where a ∈ A is a spatial weight and A is the set of all feasible spatial weights
within the region of interest.

For this relation to hold, the minimum value of z must be greater than or
equal to the maximum value of z′ and the maximum value of z must be
greater than the minimum value of z′. If both of these conditions are met, z
dominates z′ absolutely.

Pairwise dominance has two conditions as well:

{
V (z) ≥ V (z′) for all a ∈ A,
V (z) > V (z′) for some a ∈ A.

(6)

These conditions state that the overall value of z is greater than or equal to
that of z′ for all feasible spatial weights a ∈ A and strictly greater at least for
one. If both of these conditions are met, there exists a pairwise dominance
so that z dominates z′ which can be denoted z DA z

′ (Eisenführ et al., 2010).

If an alternative is not better than another in any attribute but it is worse
at least in one attribute, that alternative is dominated by the other. The
speci�c form of the additive value function or the exact weights of objectives
are not required; the alternatives that are dominated can be discarded.
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If no other alternative dominates some alternative, that alternative is called
non-dominated. The set of non-dominated alternatives can be formulated as

ZND = {zj ∈ Z|@k such that zk � zj}.

Dominance depends on the set A as seen in Equations (5) and (6), and
so ZND depends also on the set A. The set of non-dominated alternatives
ZND contains all good decision recommendations because alternatives z /∈
ZND have at most as high value for all feasible weights as a non-dominated
alternative z ∈ ZND and strictly smaller value for some. If there exists an
alternative that dominates all other alternatives, it is the most preferred
alternative.

Absolute dominance relations can be found by comparing two alternatives'
minimum and maximum values according to Equation (5). Conditions of
pairwise dominance are presented in (6). The �rst condition does not hold if
there is at least one a ∈ A for which V (z) < V (z′) applies. The simplest way
to verify the �rst condition is to �nd the minimum of V (z)− V (z′) and see
whether it is non-negative. If it is, then also all the other are non-negative
and the �rst condition holds.

The other condition holds only if there is at least one a ∈ A for which V (z) >
V (z′) applies. This can be veri�ed by �nding the maximum of V (z)− V (z′)
and by examining whether it is positive. Now these two conditions can be
written in the following form:

 min
a∈A

(
V (z)− V (z′)

)
≥ 0,

max
a∈A

(
V (z)− V (z′)

)
> 0.

(7)

If these two conditions hold, there exists a pairwise dominance so that z DA z
′

(Eisenführ et al., 2010). This approach can be used to narrow down the num-
ber of relevant alternatives since the non-dominated alternatives are preferred
ones and dominated alternatives can be discarded (Salo and Hämäläinen,
2010).

Pairwise dominance is always used unless the computational e�ciency is
not su�cient. To compute absolute dominances, only the maximum and
minimum values of every alternative must be known and compared, whereas
for pairwise dominances, the values that give the maximum and minimum
remainders must be computed for every pair. Hence, pairwise dominance is
much more demanding to compute than absolute dominance.
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3 Incomplete preference information in spatial

models

The spatial preference model was introduced in the previous section, but
more complex models are sometimes needed. In this section, the spatial
preference model is expanded so that spatial weights can be attribute speci�c
or there can be independent or attribute speci�c temporal weights. There
are altogether eight di�erent cases that are presented.

Models with incomplete preference information are also discussed in this
section. The eight cases are considered without knowing spatial weights in
every location, but instead knowing the total weights of given subregions.
Finally, some cases are examined where no weights are known exactly; there
are instead linear constraints for them.

3.1 Spatial value functions

First the additive value functions for eight di�erent cases with single or mul-
tiple attributes, independent or attribute speci�c spatial weights and inde-
pendent or attribute speci�c temporal weights are introduced. Cases (8a)
and (8b) are the same that were introduced in Section 3.1 and the rest are
expansions of these (Harju et al., 2016):

V (z) =
n∑
i=1

ai(si)v(z(si)), (8a)

V (z) =
n∑
i=1

m∑
j=i

ai(si)bjvj(z
j(si)), (8b)

V (z) =
n∑
i=1

m∑
j=i

aji (si)bjvj(z
j(si)), (8c)

V (z) =
n∑
i=1

l∑
k=1

ai(si)ckv(zk(si)), (8d)

V (z) =
n∑
i=1

m∑
j=1

l∑
k=1

ai(si)bjckvj(z
j
k(si)), (8e)
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V (z) =
n∑
i=1

m∑
j=1

l∑
k=1

ai(si)bjc
j
kvj(z

j
k(si)), (8f)

V (z) =
n∑
i=1

m∑
j=1

l∑
k=1

aji (si)bjckvj(z
j
k(si)), (8g)

V (z) =
n∑
i=1

m∑
j=1

l∑
k=1

aji (si)bjc
j
kvj(z

j
k(si)). (8h)

Spatial value functions are denoted by V (z) where si ∈ S is a location within
the region S, aji (si) is a spatial weight for a location si for the jth attribute, bj
is a weight for the jth attribute, cjk is a temporal weight for the jth attribute
on the kth time instant and vj(z

j
k(si)) is a single-attribute value function over

the level of the jth attribute in si on the kth time instant.

Equations (8a�8h) are introduced as discretized based on the non-discrete
models and all the di�erent cases are separated. For example, case (8b) is
a multiattribute value function as is case (8c), but in case (8c) there are
attribute spesi�c spatial weights, whereas in case (8b) there are indepen-
dent spatial weights. When weights are attribute speci�c, there are di�erent
attributes and the weights are de�ned separately for each of them.

In case (8d), there is a new variable, temporal weight. That means there
are more than one time instant to observe and they are assigned di�erent
weights. Case (8h) is a complete model where there are multiple attributes
and time instants and attribute speci�c spatial and temporal weights.

3.2 Regional spatial weights

So far it is assumed that the DM's preferences are known exactly so that
spatial, attribute, and temporal weights are all given. In real-world situations
that is di�cult to achieve. Thus, decision making should be possible also
with incomplete information. Methods of processing incomplete information
in the �eld of preference programming have been studied (e.g., Weber (1987))
and Salo and Hämäläinen (2010) provides a review of these methods.

It is much more challenging to elicit the spatial weights a than attribute
weights b or temporal weights c because a must be determined in every
location. Hence, the �rst step of spatial decision analysis with incomplete
preference information is to assume the exact spatial weights are not known.
In this situation, the whole region is divided into smaller subregions and
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the spatial weight is given for each subregion without knowing how it is
distributed inside the subregion. The division into subregions can be made
as the DM sees suitable. The spatial weight of the subregion i is denoted
by αi =

∑
s∈Si

a(s), when the whole region of interest S is divided into n
di�erent subregions Si ⊂ S, i = 1, 2, ..., n.

Without knowing the exact spatial weights, the exact values cannot be known
either but minimum and maximum values can be found. Hence, an interval
in which the exact value belongs to is known and with extreme values it is
possible to compute dominances, as was introduced in Section 2.4, and �nd
out the preferred alternatives. Next the minimum values of the same eight
cases that were presented in Equations (8a�8h) are introduced but knowing
only the regional spatial weights:

minV (z) =
n∑
i=1

αimin
s∈Si

v(z(s)), (9a)

minV (z) =
n∑
i=1

αimin
s∈Si

m∑
j=1

bjvj(z
j(s)), (9b)

minV (z) =
n∑
i=1

m∑
j=1

αji bj min
s∈Si

vj(z
j(s)), (9c)

minV (z) =
n∑
i=1

αimin
s∈Si

l∑
k=1

ckv(zk(s)), (9d)

minV (z) =
n∑
i=1

αimin
s∈Si

m∑
j=1

l∑
k=1

bjckvj(z
j
k(s)), (9e)

minV (z) =
n∑
i=1

αimin
s∈Si

m∑
j=1

l∑
k=1

bjc
j
kvj(z

j
k(s)), (9f)

minV (z) =
n∑
i=1

m∑
j=1

αji bj min
s∈Si

l∑
k=1

ckvj(z
j
k(s)), (9g)

minV (z) =
n∑
i=1

m∑
j=1

αji bj min
s∈Si

l∑
k=1

cjkvj(z
j
k(s)). (9h)

In Equations (9a�9h), the minimum values are presented as functions, where
s de�nes the locations within the subregions Si ⊂ S, αji is a regional spatial
weight of the jth attribute in the subregion Si, bj is a weight of jth attribute,
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and cjk is a temporal weight for the jth attribute on the kth time instant.
Furthermore, vj(z

j
k(s)) is a single-attribute value function over the level of

the jth attribute in s on the kth time instant.

Maximum values maxV (z) can be computed with similar equations as pre-
sented above, but by maximizing the function with respect to s instead of
minimizing it.

3.3 Incomplete preference information

Regional spatial weight models that allow spatial weight information to be
incomplete were introduced in the previous section. Situations where the
DM cannot determine exact weights are considered next; regional spatial
weights are not known precisely and neither are exact weights of di�erent
attributes or temporal weights. An example of the application of incomplete
information on weights can be found in Kirkwood and Sarin (1985).

A method used in this study to overcome the problem of incomplete prefer-
ence information is to use linear constraints to de�ne sets of feasible weights.
That means exact weights for the decision model don't have to be known; in-
stead some linear constraints for spatial weights, some for temporal weights
and some for the weights of di�erent attributes can be given to �nd the
preferred decisions.

When the exact weights are unknown, no exact values can be computed
either, but with constraints minimum and maximum values can be found
so an interval in which the value belongs to can be de�ned and dominance
relations can be computed.

Without any constraints, the set of feasible weights, for example spatial
weights, consists of all α ∈ A where αi ≥ 0 and

∑
i αi = 1. Linear con-

straints restrict feasible weights α to a subset A′ ⊂ A so that α ∈ A′. For
example, the DM can value one subregion (e.g., S1) more valuable than an-
other (e.g., S2), in which case the linear constraint is α1 ≥ α2. Or the DM
can give a maximum weight for the sum of two subregions, e.g., the sum of
weights of subregions S1 and S2 is at the most 0.5, in which case the linear
constraint is of the form α1 + α2 ≤ 0.5.
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3.3.1 Linear constraints for spatial weights

First, the case where there is a single attribute and a single time instant is
considered. The region of interest S is divided into subregions Si ⊂ S, i =
1, ..., n and αi represents the spatial weight of the subregion Si. The values
of α = [α1, ..., αn] are not known, only linear constraints for them are given.
The minimum value can be computed by

minV (z) = min
α∈A

n∑
i=1

αimin
s∈Si

v(z(s)), (10)

where s de�nes the locations within the subregions Si ⊂ S, αi is a spatial
weight within the subregion Si such that a ∈ A where A is a set of all feasible
spatial weights and v is a single-attribute value function over the consequence
z(s).

The maximum value maxV (z) can be computed with a similar equation as
presented above, but by maximizing the function with respect to α and s
instead of minimizing it.

There exist di�erent methods to �nd the extreme values (see, e.g., Dantzig
and Thapa (2006)). One method is to solve the linear programming (LP)
problem for α. Another is to �nd the vertices of a bounded polyhedron
de�ned by linear constraints, compute the values using these vertices and
select the minimum and maximum values. Vertices of the weights do not
depend on v(z(s)). Hence, the vertices must be computed only once even
when multiple alternatives are considered.

3.3.2 Linear constraints for spatial and attribute weights

In addition to spatial weights, exact attribute and temporal weights can also
be unknown. There is a single time instant but multiple attributes in Model
(11), for which there exist linear constraints, and a single-attribute value
function vj is attribute speci�c:

minV (z) = min
α∈A,b∈B

n∑
i=1

αimin
s∈Si

m∑
j=1

bjvj(z
j(s)). (11)

The minimum value with linear constraints for both α ∈ A, where A is a
set of all feasible spatial weights, and b ∈ B, where B is a set of all feasible
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attribute weights, can be computed with Equation (11) when spatial weights
are independent. s de�nes the locations within the subregions Si ⊂ S, αi is
a spatial weight within the subregion Si, bj is the weight of the jth attribute
and vj is a single-attribute value function over the consequence zj(s) for the
jth attribute.

Model (12) presents the situation where there are multiple attributes and
one time instant, like in Model (11), but the spatial weights are attribute
speci�c:

minV (z) = min
b∈B

m∑
j=1

min
αj∈Aj

n∑
i=1

αji bj min
s∈Si

vj(z
j(s)). (12)

In Model (12), αji is a spatial weight within the subregion Si for the jth
attribute.

The maximum value maxV (z) can be computed with a similar equations as
presented above, but by maximizing the function with respect to α, b, and s
instead of minimizing it.

There exist di�erent methods to �nd extreme values, for example by com-
bining the two methods introduced in Section 3.3.1. One possible solution
to �nd the extreme values of case (11) is to �nd vertices for both α and b
and �nd the combinations that produce the minimum and maximum values.
However, if there exists a big number of subregions computing can be ine�-
cient. Likely the more e�cient way is to compute vertices for b, solve the LP
problem for α with di�erent vertices and �nd the minimum and maximum
values.

Attribute speci�c spatial weights must be taken into account in case (12).
One method to �nd the extreme values for it is to solve the LP problem for
αj for every j = 1, 2, ...,m separately and then solve the LP problem for b.

3.3.3 Linear constraints for spatial and temporal weights

Model (13) presents the situation where there exist multiple time instants
whose weights are not known but there is only one attribute. This case is
computationally similar with case (11) and is of the form

minV (z) = min
α∈A,c∈C

n∑
i=1

αimin
s∈Si

l∑
k=1

ckv(zk(s)). (13)
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In Equation (13) minimum value can be computed with linear constraints
for spatial weights α ∈ A and temporal weights c ∈ C, where C is a set of all
feasible temporal weights. The locations within the subregions Si ⊂ S are
de�ned by s, αi is a spatial weight within the subregion Si, ck is the temporal
weight of the kth time instant and v is a single-attribute value function over
the consequence zk(s) of the kth time instant.

The maximum value maxV (z) can be computed also in this case with a
similar equation as presented above, but by maximizing the function with
respect to α, c, and s instead of minimizing it.

The extreme values in this case (13) can be computed the same way than
in the case (11). That means, by computing the vertices for α and c and
�nd the combinations that produce the minimum and the maximum or to
compute vertices only for c and then solve the LP problem for α.

3.3.4 Linear constraints for spatial, temporal, and attribute weights

In the case where there exist multiple attributes and time instants but there
are no exact values for spatial, temporal or attribute weights, there exist a
minimum value function of the form

minV (z) = min
α∈A,b∈B,c∈C

n∑
i=1

αimin
s∈Si

m∑
j=1

l∑
k=1

bjckvj(z
j
k(s)). (14)

where the minimum value is computed with linear constraints for spatial
weights α ∈ A, attribute weights b ∈ B and temporal weights c ∈ C. Spatial
and temporal weights are independent. The locations within the subregions
Si ⊂ S are de�ned by s, αi is a spatial weight within the subregion Si, bj is
the weight of the jth attribute and ck is the temporal weight of the kth time
instant. vj is a single-attribute value function over the consequence zjk(s) of
the jth attribute and the kth time instant.

The maximum value maxV (z) can be computed also in this case with a
similar equation as presented above, but by maximizing the function with
respect to α, b, c, and s instead of minimizing it.

Again, there are several ways to �nd the minimum and maximum values. One
method is to �nd vertices for all α, b, and c, compute all the combinations
and �nd the minimum and the maximum. With many subregions, this can
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be ine�cient, so another way is to �nd the vertices for b and c and then solve
the LP problem for α.

3.4 Tool for spatial decision analysis

As part of this assignment, a tool for computing the values and �nding the
set of non-dominated alternatives was implemented with MATLAB. All the
models presented in Sections 3.1, 3.2 and 3.3 were implemented. This tool is
used in the example analysis in Section 4.

The region S is assumed to be a rectangle which is comprised of squares.
Models presented in Section 3.1 give an exact spatial value as an output, and
as inputs they take spatial, temporal, and attribute weights and alternatives.
The alternatives are given as v(z(s)) since the single-attribute value function
v can be any function the DM �nds suitable.

Models presented in Section 3.2 take as inputs alternatives as v(z(s)), a
division into subregions, and weights, whereas models presented in Section
3.3 take as an input, in addition to alternatives as v(z(s)) and a division into
subregions, linear constraints for the weights. With this information they can
compute minimum and maximum values, but the actual use of these models
is to compute dominance relations of alternatives with the extreme values
as presented in Section 2.4. Hence, the output is a list of non-dominated
alternatives or a graph that shows the dominance relations of the alternatives.

4 Example analysis � �re station locations in

Espoo

The example in this section is developed to demonstrate the use of the models
presented in Section 3 in a real-world decision problem. It illustrates the use
of the GIS data and incomplete preference information in spatial decision
analysis, utilizes dominance relations to �nd the preferred alternatives, and
shows how re�ning the information has an e�ect on the results.

4.1 Decision problem and preference model

This example illustrates the problem of how to choose the location of three
�re stations in Espoo so that the �re �ghting capability is maximized. How-
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ever, there is no unambiguous optimum so some trade-o�s must be made.
The best decision is found by following the DM's preferences and it is based
on the data over the geographic region. Spatial decision analysis can take
both of them into account and �nd preferred alternatives with incomplete
information.

The station that responds to a �re is the closest of the three stations. How-
ever, if the closest station is busy, the second closest station is the one that
responds. Sometimes neither of the two closest stations cannot respond and
in this case it is the furthest station that responds. Because the three sta-
tions have di�erent response times, the multiattribute model (8b) is used. In
the example, it is assumed that the response time of a �re station is directly
proportional to the distance between the station and the �re.

There are multiple procedures for assessing a single-attribute value function
v (see, for example, Keeney and Rai�a (1993); Dyer (2005); Keeney (1982)),
but they are not discussed in this study. In this example, when de�ning
v, it is assumed the damage caused by a �re depends on the response time
non-linearly. The more time it takes to respond to the �re, the more damage
it causes. There is de�ned a maximum response time T , after which the �re
�ghters will arrive too late to make a di�erence. As long as the response
time zj(s) < T , the single-attribute value function v is de�ned as in Simon
et al. (2013). With these assumptions, the value function is of the form

vj(z
j(s)) =

1− e−3.86(1−min {1, z
j(s)
T
})

1− e−3.86
, (15)

where zj(s) is a response time from the jth closest station to the location s
and T is a maximum response time.

Weight of the jth attribute, bj, represents the likelihood that �re �ghters
arrive from the jth closest station. The importances of di�erent locations
can be determined by a(s). It is a spatial weight in location s and presents
the importance of that location.

In order to use the discrete model, the data has to be discretized. This means
that the region of interest has to be divided into a �nite number of locations
and the single-attribute value is computed in every location using Equation
(15). In this case spatial weights a should also be given for every location in
order to compute the value using Equation (8b).

However, it is very challenging for the DM to determine the weights of all
locations, so the model with regional spatial weights (9b) is useful. The
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whole region is divided into smaller subregions and the spatial weights are
not given to every location, but to every subregion. Values v(z(s)) are still
computed for every location.

If the DM is not able to state a spatial weight for every subregion or exact
weights of di�erent attributes, model (11) can be used. With this model, the
DM has to give only linear constraints for weights. She can, for example,
evaluate some subregion more valuable than another based on population or
important places nearby.

4.2 Initial preference information

In this example, nine possible locations, that can be seen in Figure 1, are
considered for the �re stations around Espoo. All the three-station combina-
tions of these nine candidates are analyzed in the example to eliminate poor
alternatives and to �nd the best alternatives.

In this example, the map of Espoo is divided into 67 × 96 = 6432 locations
and the single-attribute value is computed in every location using Equation
(15). T is de�ned to be a response time it takes from help to come a distance
that is half of the maximum distance possible on the map in Figure 1, i.e.,
near to 20 km. An example of vj(zj(z)) can be seen in Figure 2. Observed
station locations in the example are Otaniemi, Perusmäki, and Kauklahti,
and the values are computed to the closest station when j = 1, to the second
closest station when j = 2, and to the third closest station when j = 3.

For the regional spatial weights, the region is divided into nine subregions.
Espoo is divided into eight subregions and the ninth subregion consists of
the sea, the islands, and the areas that are not part of Espoo; their spatial
value is de�ned to be zero. The subregions can be seen in Figure 1.

The DM gives linear constraints for the spatial weights α of the subregions
Si, i = 1, 2, ..., 9 as follows:

α1 = 0,

α2 + α4 ≤ 0.08,

α3 ≤ 0.01,

α3 ≤ α4,

α6 ≥ 0.25,

α6 ≤ 0.4,
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Figure 1: Potential �re station locations in Espoo and the division into sub-
regions. Vanha-Espoo (the yellow region) is divided into two subregions with
the black borderline.

α6 + α7 ≥ 0.5,

α6 ≥ 2 α9,

α5 + α8 ≥ 0.15,

α6 ≥ α7,

α7 ≥ α5,

α4 + α5 ≥ 0.11,

α2 ≥ α4,

α2 + α4 ≤ α8,

α9 ≤ α7,
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Figure 2: A single-attribute value function vj(zj(s)) to the jth closest station,
j = 1, 2, 3, when the observed station locations are Otaniemi, Perusmäki, and
Kauklahti.

where αi is the spatial weight of subregion Si so that the subregions shown
in Figure 1 are numbered as shown in Table 1.

Table 1: Subregions Si, i = 1, 2, ..., 9

Subregion Area
S1 The sea, the islands and the areas outside Espoo
S2 Pohjois-Espoo
S3 Western side of Vanha-Espoo
S4 Suur-Kauklahti
S5 Eastern side of Vanha-Espoo
S6 Suur-Leppävaara
S7 Suur-Tapiola
S8 Suur-Matinkylä
S9 Suur-Espoonlahti

The �rst of these constraints de�nes the spatial weight of S1 to be zero and
others determine the weights of di�erent subregions of Espoo. For example,
the spatial weight of Suur-Leppävaara (α6) is de�ned to be between 0.25 and
0.4, bigger than the weight of Suur-Tapiola (α7) and at least twice as big as
the weight of Suur-Espoonlahti (α9).

The DM weights subregions on the grounds of population, density (a �re
spreads easily and causes more damage when population density is high),
and important premises. Therefore, for example, Suur-Leppävaara (S6) is
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weighted quite valuable: it's the subregion with the biggest population, peo-
ple live there quite densely and a lot of important premises are located
there. By contrast, subregions Pohjois-Espoo and western Vanha-Espoo
(S2 and S4) are not so valuable for the DM; their population and density
are small and there are not much premises.

The DM gives the linear constraints for weights of di�erent attributes b as
follows:

b1 ≥ 0.55,

b1 + b2 ≥ 0.8,

b2 + b3 ≥ 0.3,

b3 ≥ 0.1,

b1 ≥ b2,

b2 ≥ b3,

where bj is the weight of the jth attribute, in practice the likelihood that
�re �ghters arrive from jth closest station. The �fth and sixth conditions
state that the likelihood that �re �ghters come from the nearest station is
the biggest and from the second nearest station the second biggest. The
�rst four conditions give linear constraints for the magnitude of the weights,
for example the �rst one determines the likelihood that help comes from
the closest station must be at least 0.55. Extreme values can be found using
vertices as described in Section 3.3. With these constraints, b has �ve vertices
as shown in Table 2.

Table 2: Vertices of b with given linear constraints

b1 b2 b3
0.7 0.15 0.15
0.7 0.2 0.1
0.6 0.2 0.2
0.55 0.25 0.2
0.55 0.35 0.1

With these constraints for regional spatial weights α and attribute weights b,
extreme values are computed with the implemented tool for all 84 di�erent
three-station combinations using Equation (11). Preferred alternatives are
found by pairwise dominance using Equation (7). There are 43 dominated
alternatives and 41 non-dominated alternatives, so a little more than half of
the alternatives can be eliminated.
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Figure 3 visualizes dominance relations of a set of alternatives. A graph of all
84 alternatives' dominance relations would be messy, so only 13 alternatives
are shown in the �gure: alternatives whose one station location is Otaniemi,
one is Mankkaa or Perusjärvi and the last one chosen freely. Every number
matches with one station, for example, '1' means that one of three stations
is located in Otaniemi in that alternative. All station numbers are seen in
Table 3.

An arrow is drawn from the alternative that dominates to the dominated al-
ternative. For example, when observing this set of alternatives, alternatives
'129', '139', '137', '123', '124', and '127' are non-dominated, whereas an al-
ternative '128' is dominated by almost every other alternatives. Overlapping
dominance relations are not shown, for example, '129' dominates '128' even
though there is not an arrow from '129' straight to '128' but through '125'.

Figure 3: Graph of dominance relations of a set of alternatives.

There are still 41 non-dominated alternatives whose preferences over each
others are not known. By analyzing the non-dominated alternatives, some
conclusions can be made of which are good locations for the stations and
which are not. The appearances of stations among non-dominated alterna-
tives are found in Table 3.

For example, it can be seen from Table 3 that Lakisto is not a good station
location because it only appears in dominated alternatives. Then again,
Espoon keskus seems quite a good location for a station because it appears
in 20 non-dominated alternatives.
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Table 3: Number of times an examined station appears in non-dominated
alternatives

Station Station Number of
number appearances
1 Otaniemi 12
2 Mankkaa 19
3 Perusmäki 16
4 Espoonlahti 14
5 Siikajärvi 10
6 Kauklahti 14
7 Karakallio 18
8 Lakisto 0
9 Espoon keskus 20

4.3 Re�ned preference information

Many alternatives were eliminated with incomplete information. If fewer
non-dominated alternatives are wanted, stricter constraints or exact weights
are needed. Next it is assumed that the DM has received more information
and is able to give exact weights for subregions and attributes that are the
following:

α =
[
0 0.0352 0.0088 0.0308 0.0881 0.3524 0.2643 0.0881 0.1322

]
,

b =
[
0.6 0.25 0.15

]
.

The weights are scaled so that
∑

i αi = 1 and
∑

j bj = 1. With these weights,
Equation (9b) can be used to compute extreme values and then pairwise
dominances can be found. By using this method, there exist 66 dominated
alternatives and 18 non-dominated. So better results can be gained by spec-
ifying the preferences.

There are still 18 non-dominated alternatives whose relative order is not
known. To gain more precise results some specifying should be made. One
possibility is to divide the region into smaller subregions so the spatial weights
could be more precisely de�ned.

Espoo is divided into 13 subregions and the one that consists of the sea, the
islands, and the areas outside of Espoo; these 14 subregions can be seen in
Figure 4. In addition to the smaller subregions, these 13 subregions of Espoo
di�er from the previous 8 subregions so that now the area inside a subregion
is more homogeneous. For example, the density may previously have varied
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Figure 4: Espoo divided into 13 subregions and the one with the sea, the
islands and the areas outside of Espoo.

a lot within a subregion while in the current division these types of varieties
are striven to minimize.

It is assumed that the DM is able to give spatial weights for the subregions
weighting by the same reasons than previously and the weights of di�erent
attributes have not changed. Equation (9b) can be used to compute the
extreme values, but now αi is the weight of subregion Si so that i = 1, 2, ..., 14.
The spatial weights are the following:

α = [0 0.0088 0.022 0.0264 0.0088 0.0308 0.0308 0.0661 0.0441 0.0661

0.0352 0.1101 0.2203 0.3304].
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This method eliminates 75 dominated alternatives and leaves 9 non-dominated
alternatives. The numbers of stations' appearances in non-dominated alter-
natives are shown in Table 4.

Table 4: Number of times an examined station appears in non-dominated
alternatives

Station Number of
appearances

Otaniemi 3
Mankkaa 7
Perusmäki 3
Espoonlahti 1
Siikajärvi 0
Kauklahti 1
Karakallio 5
Lakisto 0
Espoon keskus 7

As can be seen in Table 4, Lakisto and Siikajärvi are not in any of the
non-dominated alternatives so they can be discarded. Espoon keskus and
Mankkaa are in seven non-dominated alternatives, so for both of them, there
exist only two alternatives that they are not included in. Hence, they are good
decision recommendations. All non-dominated three-station combinations
are itemized in Table 5.

Table 5: Non-dominated alternatives

Station locations
Otaniemi Mankkaa Karakallio
Otaniemi Mankkaa Espoon keskus
Otaniemi Karakallio Espoon keskus
Mankkaa Perusmäki Karakallio
Mankkaa Perusmäki Espoon keskus
Mankkaa Espoonlahti Espoon keskus
Mankkaa Kauklahti Espoon keskus
Mankkaa Karakallio Espoon keskus
Perusmäki Karakallio Espoon keskus

Non-dominated station locations concentrate near the subregions that are
weighted the most valuable. At least two of Mankkaa, Espoon keskus, and
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Karakallio should always be locations of �re stations in the three-station lo-
cation combination. The third location can be a little further from the areas
with biggest weights, for example in Otaniemi, Perusmäki or even in Espoon-
lahti or Kauklahti. However, Siikajärvi and Lakisto are too far for them to be
good �re station locations. Most likely optimal �re station locations, when
maximizing a geographically weighted value function, are Mankkaa, Espoon
keskus, and a third one, which could be Otaniemi, Perusmäki, Espoonlahti,
Kauklahti or Karakallio.

In this example, only one case of models presented in Sections 3.2 and 3.3
was demonstrated, that is the multiattribute model with one time instant
and independent spatial weights. The other models work with the same
principles.

5 Conclusions

After the basics of the spatial decision analysis, eight di�erent cases for spa-
tial preference models were presented in this study, �rst with exact weights
and then with regional spatial weights. Next, �ve cases with incomplete pref-
erence information were discussed. To use these models in real-world decision
problems, a tool for computing spatial values and for �nding non-dominated
alternatives was implemented. Lastly, an example to demonstrate presented
models and to use the developed tool was constructed. The example illus-
trated the decision problem of �nding the best locations for three �re stations
in Espoo.

Spatial preference models are useful in the decision problems based on GIS
data to eliminate alternatives and �nd the preferred decisions, as shown by
the illustrative example in this study. An extensive decision analysis can
be made because the models include also multiple attributes and time in-
stants, division into subregions as the DM prefers and incomplete preference
information.

As was shown, it is possible to eliminate many alternatives with incomplete
preference information, but the more speci�ed results are wanted, the more
information must be given. Decision analysis can be conducted with big
subregions and with linear constraints for weights, but by increasing the
number of subregions, re�ning constraints of weights or giving exact weights,
better results can be gained. This was demonstrated in the example; �rst
big subregions and linear constraints eliminated a bit more than half of the
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alternatives. Then, exact weights narrowed down the number of relevant
alternatives to almost one �fth of the original and �nally the division into
smaller subregions halved the count of remaining alternatives.

With incomplete preference information, the exact values for di�erent alter-
natives cannot be obtained, but extreme values are found. This enables to
eliminate relevant alternatives through dominance, which is fairly straight-
forward and e�cient. The most preferred alternative is in the set of non-
dominated alternatives. However, that set often consists of multiple alterna-
tives whose relative order is unknown. The tool implemented for computing
the extreme values and �nding the non-dominated alternatives was used in
the example and proved to be workable.

Preference models that allow information to be incomplete are useful in many
decision problems and as the example shows, the models presented in this
study can be applied to real-world decisions with spatially varying conse-
quences. The capability of these models to work with multiple attributes is
often necessary since many decisions demand consideration of many aspects.

The development of techniques and procedures in preference decision mak-
ing have enabled the contributions of mathematical models on many decision
problems. To use the full potential of decision analysis, for instance in com-
panies, the development of decision analysis methods is required so that they
are understandable and practical. Future research is needed especially in the
GIS context, for the impact of the data over geographic region is often rel-
evant but not taken into consideration. Another aspect, time, is not either
much discussed in the �eld of decision making, even though many decisions
could gain better results by considering multiple time instants.
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