

Modelling Incomplete Information about Baselines in Portfolio Decision Analysis

Dr. Juuso Liesiö and Dr. Antti Punkka juuso.liesio@aalto.fi, antti.punkka@aalto.fi Department of Mathematics and Systems Analysis Aalto University School of Science P.O. Box 11100, 00076 Aalto, Finland sal.aalto.fi

Multi-criteria project portfolio selection

- Choose a subset (=a portfolio) of projects from a set of proposals
 - Projects evaluated on multiple criteria
 - Maximize portfolio value function subject to resource constraints
- Additive-linear portfolio value (Golabi et al., 1981)
 - Widely used in applications; e.g., Healthcare (Kleinmuntz, 2007), R&D (Golabi et al., 1981), infrastructure asset management (Liesiö et al., 2007), military (Ewing et al., 2006)
 - Decision recommendations depend on the specification of the baseline value, i.e., the value of not doing a project (Clemen & Smith, 2009)
- We develop methods for
 - Specifying the baseline value
 - Analyzing how sensitive decision recommendations are to changes in the baseline value

Linear-additive portfolio value

- Projects j = 1, ..., m evaluated w.r.t. criteria i = 1, ..., n
 - Measurement scales X_1, \dots, X_n with least (most) preferred level $x_i^0 (x_i^*)$
 - − $x_i^j \in X_i$: performance of project *j* w.r.t. criterion *i*
- Value of project *j*: $v(x^j) = \sum_{i=1}^n w_i v_i(x_i^j)$
 - $v_i: X_i \to [0,1]$: criterion-specific value functions ($v_i(x_i^0) = 0, v_i(x_i^*) = 1$)
 - w_i : weight of criterion $i(\sum_{i=1}^n w_i = 1)$
- $\rightarrow v(x^0) = 0$ and $v(x^*) = 1$
- Value of portfolio z: $V(z, v^B) = \sum_{j=1}^m [z_j v(x^j) + (1 z_j)v^B]$
 - Binary decision variable $z_j = 1$ iff project *j* is included in the portfolio
 - \rightarrow Optimization problem: **max**_z $V(z, v^B)$ subject to resource constraints
 - *v^B*: baseline value defining the value of not doing a project

The baseline value v^B matters

	Financial		Fit to	Days				
	$\operatorname{contribution}$	Risk	strategy	required				
Project	x_1^j	x_2^j	x_3^j	c_j	$v_1(x_1^j)$	$v_2(x_2^j)$	$v_3(x_3^j)$	$v(x^j)$
A (j = 1)	\$200000	uncertain	5	800	0.47	0	1	0.6175
$\mathbf{B}(j=2)$	-\$13750	probable	5	250	0	0.5	1	0.625
C(j = 3)	\$12500	safe	4	700	0.3	1	0.75	0.7
$D\left(j=4\right)$	\$307500	safe	3	650	0.7	1	0.5	0.675
E(j = 5)	-\$1250	safe	2	350	0.03	1	0.25	0.3825
F $(j = 6)$	\$393000	uncertain	2	800	0.89	0	0.25	0.3475
G(j=7)	\$442500	uncertain	2	600	1	0	0.25	0.375
$\mathbf{H}(j=8)$	\$26500	probable	1	400	0.61	0.5	0	0.2775
								(0000)

Example from Kleinmuntz (2000)

• Solving $\max_{z} \{ V(z, v^{B}) | \sum_{j=1}^{m} z_{j}c_{j} \le 2500 \}$ yields

- {B,C,D,E,H}, if $v^B = v(x^0) = v(-\$13750,uncertain,1) = 0$

- {A,B,C,D}, if $v^B = v$ (\$0,safe,1) \approx 0.258

Specifying the baseline value

- Golabi et al. (1981): Ask the DM to define a project
 x ∈ X₁ × ··· × X_n such that she is indifferent between doing and not doing the project
 - \rightarrow E.g. "I am indifferent between doing and not doing project with performance (\$0,safe,1)"

 $\rightarrow v^B$ = (\$0,safe,1) \approx 0.258

- Such a project can be difficult to define
- More general approach: establish constraints on the baseline value
 - E.g. "I would not do project (\$0,safe,1) but I would do (\$0,safe,2)"

 \rightarrow 0.258 \approx (\$0,safe,1) < v^B < (\$0,safe,2) \approx 0.383

What if the baseline value v^{B} is below $v(x^{0})$?

- E.g. selecting which bridges to repair
 - 2 damage indexes $X_1 = \{I, II, III, IV\}, X_2 = \{A, B, C\}$
 - If the DM would repair a bridge with performance (I,A):

 $\rightarrow v^B < v(\mathbf{I}, \mathbf{A}) = v(x^0) = \mathbf{0} \le v(x) \ \forall \ x \in X_1 \times X_2$

 \rightarrow Not possible to specify a bridge *x*, s.t., the DM would be indifferent between repairing and not repairing it

- Baseline value can be constrained by comparing **portfolios**
 - Any preference between two portfolios with unequal number of projects yields a constraint $V(z, v^B) \ge V(z', v^B)$ for the baseline value
 - E.g., "A portfolio of five (I,A) bridges is preferred to a portfolio of three (IV,C) bridges"

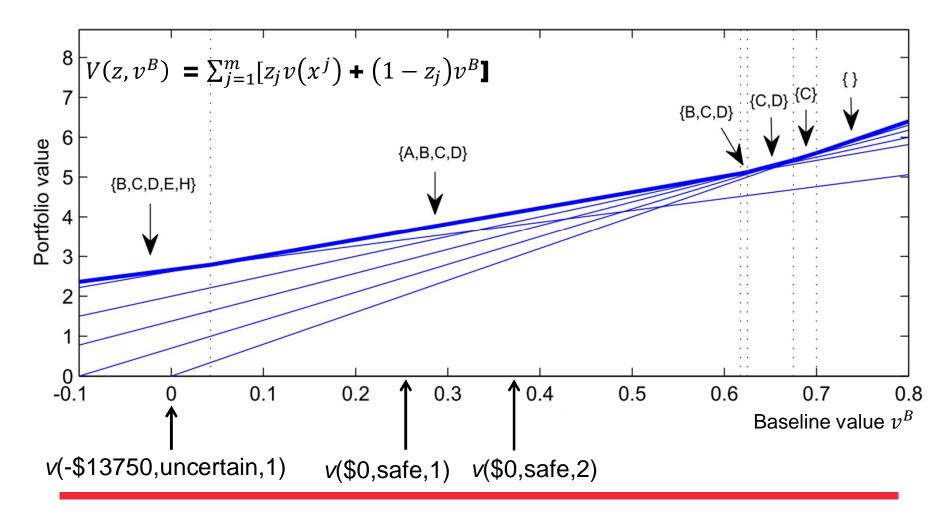
•
$$5v(x^0) + (m-5)v^B \ge 3v(x^*) + (m-3)v^B \Rightarrow v^B \le -3/2$$

Aalto University School of Science

Potentially optimal (PO) portfolios

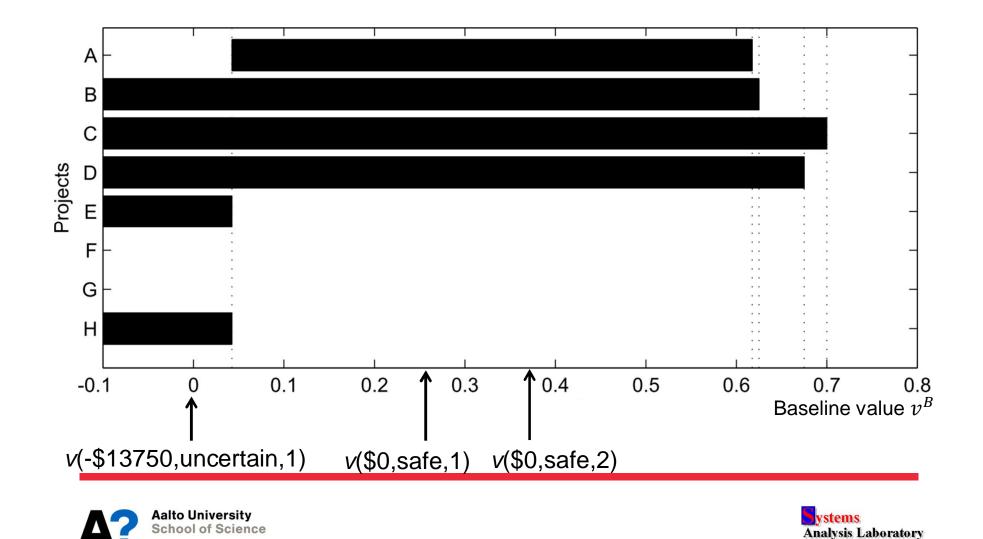
- Which portfolios can be optimal if the baseline value is incompletely defined?
- How sensitive the decision recommendation are to small changes in the baseline value?
- \rightarrow **Definition.** A feasible portfolio *z* is *potentially optimal* if it maximizes $V(z, v^B)$ for some baseline values v^B
 - A feasible portfolio satisfies the resource constraints

Example: Potentially optimal portfolios



ystems Analysis Laboratory

Example: Potentially optimal portfolios



Algorithm for identifying PO portfolios

• **Lemma**: The value difference of two portfolios containing the same number of projects is constant for all $v^B \in \mathbb{R}$: $V(z, v^B) - V(z', v^B) = \sum_{j=1}^m z_j v(x^j) - \sum_{j=1}^m z'_j v(x^j)$

 \rightarrow Algorithm sketch:

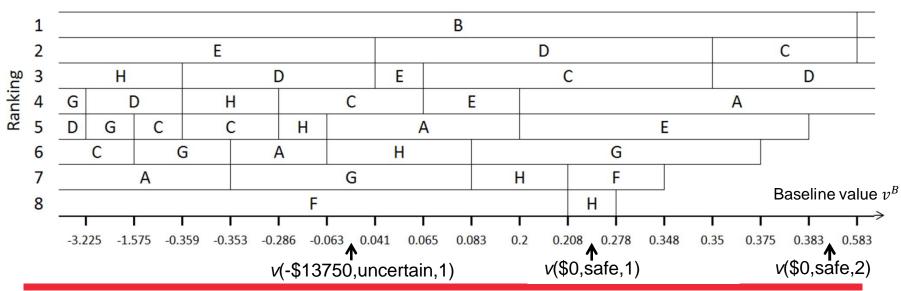
- 1. Solve the optimal portfolio of each size k = 0, ..., m with ILP: $\max_{z} \{ V(z, \cdot) | \sum_{j=1}^{m} z_{j} c_{j} \le b, \sum_{j=1}^{m} z_{j} = k \}$
- 2. Use (simple) pairwise checks to identify the PO portfolios
- Solving some 130 PO portfolios for a problem with m = 200 projects takes about 13 seconds

Value-to-Cost ratios

- In applications with a single budget constraint, ratios $v(x^j)/c_j$ are often used to prioritize projects
 - Clemen & Smith (2009): Use of $v(x^j)/c_j$ assumes $v^B = 0$
- Value-to-cost ratio should be defined as $\frac{v(x^j)-v^B}{c_j}$:
 - Take any baseline value v^B and let portfolio z^* include the projects with the highest (positive) value-to-cost ratios
 - → z^* is an optimal solution to $\max_{z} \{V(z, v^B) | \sum_{j=1}^{m} z_j c_j \le b\}$, where **b** = $\sum_{j=1}^{m} z_j^* c_j$

Computing all possible Value-to-Cost orderings

- The ordering can change only at points v^B in which
 - 1. Two projects have equal (positive) ratio: $\frac{v(x^j) v^B}{c_i} = \frac{v(x^k) v^B}{c_k}$



2. Ratio of some project is zero: $v(x^j) - v^B = 0$

Conclusions

- The baseline value $v^B \in \mathbb{R}$ defines the value of not doing a project
- General techniques for specifying the baseline value
 - Applicable also if the baseline value is below $v(x^0)$
 - Ordinal preference statements can be modeled as constraints on the baseline value
- Computational tools for analyzing how project and portfolio decision recommendations depend on the baseline value
 - Allows sensitivity analysis / incompletely specified baseline value
 - Applicable for problem instances with hundreds of projects

References:

- Clemen, R., Smith, J., (2009). On the choice of baselines in multiattribute portfolio analysis: A cautionary note. Decision Analysis 6 (4), 256–262.
- Ewing Jr., P.L., Tarantino, W., Parnell, G.S., (2006). Use of Decision Analysis in the Army Base Realignment and Closure (BRAC) 2005 Military Value Analysis, *Decision Analysis*, Vol. 3, pp. 33-49.
- Golabi, K., Kirkwood, C.W., Sicherman, A., (1981). Selecting a Portfolio of Solar Energy Projects Using Multiattribute Preference Theory, *Management Science*, Vol. 27, pp. 174-189.
- Kleinmuntz, D.N., (2007). Resource Allocation Decisions, in Edwards, W., Miles, R.F. & von Winterfeldt, D. (Eds.); *Advances in Decision Analysis*, Cambridge University Press.
- Kleinmuntz, D. N., (2000). CBA associates. Department of Business Administration, University of Illinois at Urbana-Champaign.
- Liesiö, J., Mild, p., Salo, A., (2007). Preference Programming for Robust Portfolio Modeling and Project Selection, *European Journal of Operational Research*, Vol. 181, pp. 1488-1505.
- Lindstedt, M., Liesiö, J., Salo, A., (2008). Participatory Development of a Strategic Product Portfolio in a Telecommunication Company, *International Journal of Technology Management*, Vol. 42, pp. 250-266.

