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1. Introduction

1.1 Nuclear waste management

The production of nuclear energy creates hazardous radioactive waste. At present, the most 
credible disposal solution is underground burial (Chapman & McKinley, 1987). Nuclear waste 
of moderate radioactivity can be placed in near-surface repositories that sit at depths of few 
tens of meters (or even at the surface under a top cover). Highly radioactive waste, such as 
spent nuclear fuel, is to be put in deep-geological repositories deep underground. While there 
are several near-surface repositories around the world, the only deep one is the Waste Isolation 
Pilot Plant in the United States (which is a special case as it is restricted to military waste). 
Apart from the specific design, nuclear waste repositories are based on a multi-barrier concept 
for containing radionuclides (i.e., radioactive particles) inside the waste. 

Before disposal, nuclear waste is temporarily stored in the nuclear power plants or other 
facilities. This is because it first needs to be refrigerated, or because there are no disposal 
solutions available. 

Throughout storage and disposal, nuclear waste should be confined until its radioactivity has 
decayed to safe levels. Depending on the radionuclides in the waste inventory, this may take 
up to 10,000 or even 1,000,000 years. Due to barrier degradation, some radionuclides will still 
escape the facility before safe levels have been reached. After migrating through the 
environment and the food chain, these contaminants may reach humans and expose them to 
radiations. 

Therefore, before a nuclear waste management facility is licensed for construction and 
operation, it is necessary to ensure that its radiological impact on the public will be as low as 
reasonably achievable. Towards this end, nuclear waste management agencies (hereafter 
represented as the risk assessor) conduct risk assessments that are reviewed by nuclear safety 
authorities. 

1.2 Uncertainty, risk and decision making

The licensing of a safety-critical facility such as a nuclear waste repository is a decision on a 
system that does not exist yet. This decision cannot be informed by deterministic predictions, 
because they cannot fully capture the actual evolution of the system. Many of the deterministic 
mechanisms which govern the system evolution are in fact unobservable (Pearl & Verma, 
1992). Thus, it is more useful to provide a risk estimate on the basis of the spectrum of possible 
events. 

There are various definitions of risk and ways to quantify it (Society for Risk Analysis, 2018). 
In general, risk is an aggregation of likelihoods and impacts of the different possible outcomes 



12 

of uncertainties. The estimation of these likelihoods through the characterization of 
uncertainty is a foundational element of risk analysis. 

One instrument to characterize uncertainty is probability theory. Consider the anecdotal coin 
toss, for instance. Based on the history of tossed coins, one would state that the probabilities 
of the coin falling with heads or tails up are 50% each. Statements about the probability of an 
earthquake occurring at a given time and area cannot be as precise due to the rarity of earlier 
events, for instance. 

Exact probability statements on the tossed coin are usually accompanied by the caveat that 
the coin should be well balanced. If there is no certainty that this is the case, one may abstain 
from stating what the probability of either face of the coin exactly is. 

Against this background, it is customary in risk analysis to distinguish between two main 
types of uncertainty. On one hand, aleatory uncertainty is the randomness of an outcome (Fox 
& Ülkümen, 2011). In the example of the coin, this is about whether the face up will be heads 
or tails. On the other hand, epistemic uncertainty is the imprecision of the information (Fox & 
Ülkümen, 2011; Aven & Zio, 2011). This may cause the probabilities of the outcomes of the coin 
toss not to be known exactly. 

As a rule, epistemic uncertainty can be reduced by acquiring additional information. For 
instance, a data-informed process may be carried out by tossing the coin many times until the 
frequencies of heads and tails converge to stable values (e.g., 50%-50%, or 60%-40%, 70%-
30%, etc., if the coin is loaded). Aleatory uncertainty is commonly deemed irreducible, as the 
use of probabilities to model the uncertainty of an event is not a quantity that can be modified 
incrementally. 

The boundary between aleatory and epistemic uncertainty is not clear-cut in the practice 
(Hora, 1996). An alternative view is a model-oriented interpretation (Der Kiureghian & 
Ditlevsen, 2009). Specifically, the distinction between the uncertainties would only make sense 
within the model of reality. Rather than labelling the uncertainty associated with each variable 
at the onset of the risk assessment, the risk assessor may first decide how to characterize each 
uncertainty, and then proceed with a categorization. For instance, uncertainty about the 
occurrence of an event can be characterized with a probability and considered as aleatory, 
whereas the uncertainty about this probability can be quantified through imprecise values and 
considered as epistemic.  

Aleatory and epistemic uncertainties appear in the risk assessment of nuclear waste 
management facilities. As a result of the long lifetime of the waste, there is aleatory uncertainty 
about the evolution of the system formed by the facility and its surrounding environment. This 
system can be largely described through relevant physical, chemical (or even human) factors, 
collectively referred to as features, events and processes (FEPs). There is also uncertainty about 
the dependencies between the FEPs. These dependencies can be so complex that the state of 
the system cannot be straightforwardly determined based on the states of the FEPs (Society for 
Risk Analysis, 2018). 

Epistemic uncertainty is instead represented by the imprecision of the information provided 
by the instruments utilized to study the nuclear waste management facility. For example, the 
migration of radionuclides through the barriers of a repository and the environment is typically 
simulated through models whose parameters are not precisely known. In probabilistic 
approaches, it is usually not possible to estimate probabilities precisely either. 

In the presence of these uncertainties, the radiological impact of the facility can be assessed 
more appropriately through risk (e.g., the expected value of the dose rate to the public is 
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0.1 mSv/y, or the probability of the dose rate being more than 1 mSv/y is 5%) than through 
prediction (e.g., the dose rate will be 0.2 mSv/y). Concretely, the risk assessor should estimate 
the likelihood and radiological impact of a number of possible evolutions of the system. The 
results can be aggregated into a risk estimate which quantifies the expected dose rate to the 
public or the chances that this rate exceeds some predefined safety threshold. 

The licensing of a nuclear waste management involves economical and political issues. From 
the viewpoint of safety, the facility can be approved if the risk estimate is lower than the 
acceptable risk limit. This limit should coincide with the risk level in the business-as-usual 
alternative in which the facility is not licensed (Borgonovo & Cillo, 2017). 

The licensing decision, however, needs to be taken facing epistemic uncertainty. If the risk 
assessor describes the likelihoods and impacts of the evolution of the FEPs as distributions or 
intervals, then risk will be estimated as a distribution or interval as well. In case of overlap 
between the imprecise risk estimate and the risk limit, the results are not conclusive. Especially 
with Paper 3, this dissertation elaborates on the implications of epistemic uncertainty on the 
conclusiveness of risk assessment as a support to decision making. 

1.3 Scenario analysis and comprehensiveness

A way of characterizing the aleatory uncertainty about the evolution of the system is scenario 
analysis (Leinonen, et al., 2021). An important quality of scenario analysis is 
comprehensiveness. This term indicates the exhaustive coverage of the spectrum of possible 
evolutions of the system. Especially with regard to nuclear waste management, though, the 
scenario analysis literature does not specify what it practically means and how it can be 
evaluated (see Paper 1). Thus, the link between comprehensiveness and the ability to inform 
risk-based decisions conclusively is not fully established. This has created tensions about which 
approach should be adopted for achieving comprehensiveness in scenario analysis (see Paper 
1). 

In the pluralistic approach, risk assessors formulate a limited number of scenarios based on 
different assumptions about the evolution of the FEPs. Specifically, each scenario depicts a 
more or less severe impairment of the safety functions of the nuclear waste management 
facility. The impact of each scenario is usually assessed by computer simulation and checked 
against a safety threshold. There is no quantification of how likely the scenarios are, because 
scenario probabilities are not employed. Consequently, the scenario impacts are not 
aggregated, but presented separately from each other in the results. 

Probabilistic approaches include a wide family of methods, which rely on building a 
probability space of scenarios. Each elementary event of this probability space is a joint 
realization of the FEPs and represents a specific evolution of the system. Any set of such 
elementary events (i.e., an event in the probability space) constitutes a scenario. Probabilistic 
approaches are characterized by the definition of a probability distribution over the sample 
space of elementary events and, hence, over the scenarios. As in the pluralistic approach, the 
scenario impacts can be quantified with computer simulations. However, the key difference is 
that these impacts are weighted by the scenario probabilities, and then aggregated into a single 
risk estimate. 

Advocates of the pluralistic approach object that the probabilistic approach lacks 
transparency, because the overall risk estimate does not explicitly quantify the contribution of 
each scenario (Chapman, et al., 1995). They also argue that the uncertainty of having 



14 

overlooked fundamental FEPs is so large that it is meaningless to use probabilities for 
characterizing the aleatory uncertainty about the limited system of the identified FEPs. 

Criticisms are mutual, though. According to probabilistic researchers and practitioners, 
displaying few pluralistic scenarios does not permit a thorough quantification of risk. For 
instance, if one or more scenarios exhibit violations of the safety threshold, it can be claimed 
that these scenarios are so unlikely that they can be neglected (Sumerling & Thompson, 1992). 
Nevertheless, with no support of probabilities, it is difficult to overrule scenarios, no matter 
how unrealistic (Mallants & Chapman, 2020). Even if there is no violation among the 
scenarios, the nonmonotonicity of the radiological impact makes it hard to demonstrate that a 
new scenario would not (Goodwin, et al., 1994). 

In summary, choosing how to conduct scenario analysis is not trivial. Specifically, no 
approach offers a fully convincing solution to evaluate comprehensiveness. This may have been 
one of the reasons why safety authorities have been slow to reach conclusions on the risk 
acceptability of nuclear waste management facilities. This dissertation aims at combining the 
strengths of current approaches to overcome their weaknesses, with the goal of improving the 
systematization of scenario analysis towards the achievement of comprehensiveness. 

The focus of the dissertation is on nuclear waste management but, apart from specific 
references to the related phenomena, the findings can be arguably extended to scenario 
analysis for risk assessment at large. In this regard, the term “FEPs” may be replaced in the 
discussion by the more generic expression “system factors”. 
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2. Methodological background

The papers of this dissertation build on several methodologies which are briefly covered in this 
section. Some of the papers use these methodologies as such, while others advance the state-
of-the-art. 

2.1 Simulation

Nuclear waste disposal is based on the principle of concentrate-and-confine, meaning that 
waste is protected by multiple barriers organized in a Russian-doll structure (Chapman & 
McKinley, 1987). In near-surface repositories, these barriers consist of concrete containers of 
increasing dimensions. Deep geological repositories are designed with the KBS-3 technology 
(Montonen, et al., 2020), which consists of a copper canister surrounded by a buffer made of 
bentonite (i.e., a highly compacted clay). Before final disposal, nuclear waste is stored in the 
refrigeration pools of auxiliary facilities. 

Nuclear waste is characterized, in particular, by its radionuclides. These are radioactive 
isotopes of elements like strontium, iodine and plutonium, among others. Radionuclides can 
escape through fractures or other defects in the containment barriers. Such defects may be 
present since the construction phase or they may arise during the facility’s lifetime. Barrier 
degradation is also caused by stressors such as mechanical strains, corrosion and erosion. 

The main driver for the release and subsequent transport of radionuclides is water. Except 
for the Yucca Mountain project at a desertic flatland in Nevada, deep geological repositories 
can be assumed to lie in the saturated zone. If water completely fills the voids in the soil, the 
repository barriers can be exposed to aggressive chemical substances. In near-surface 
repositories, rainfall can seep through the top cover, get in contact with the containment 
barriers and foster their degradation. Once mobilized, the radioactive particles start migrating 
through the barriers and into the environment. 

A number of hydrogeological variables affect the migration of radionuclides, such as the 
velocity of water and the interaction between the contaminant and the solid matrix of the 
transport medium. In risk assessment, these phenomena need to be simulated to estimate the 
radionuclide concentration at locations where they may be ingested or inhaled by humans. 
Several experimental studies have been conducted with this aim (Savage, et al., 1987; Rochelle, 
et al., 1994). Yet, the results of these studies cannot be readily extended to field-scale 
conditions. Most risk assessments therefore rely on the mathematical modelling of physical 
and chemical phenomena. 

The advection-dispersion equation (ADE) (Bear, 1979; Bear & Cheng, 2010) explains how the 
concentration of a contaminant varies in space and time as an effect of its transfer with water, 
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diffusive Brownian motion, turbulence, adsorption, radioactive decay, among others. In most 
applications, the heterogeneity of the transport medium involves complex boundary 
conditions that make it difficult to derive an analytical solution. 

Alternatives to analytical solutions of the ADE include numerical methods, compartment 
models and particle-tracking algorithms. As an example of the latter group, the Kolmogorov-
Dimitrev particle-tracking algorithm (Marseguerra & Zio, 1997; Giacobbo & Patelli, 2008; 
Cadini, et al., 2010 (a); Cadini, et al., 2010 (b); Cadini, et al., 2012; Cadini, et al., 2013) treats 
the spatial domain as a discrete set of cells so that the transition of each contaminant particle 
from one cell to another is modeled as an exponential process. Computational solutions have 
been implemented in computer codes, some of which are embedded in commercial tools like 
MT3DMS (Khayyun, 2018), GoldSim (Lee & Hwang, 2009) and COMSOL Multiphysics 
(Seetharam, et al., 2012). 

While these tools cover the transport of radionuclides, disposal systems are so complex that 
additional simulation models may be needed. For instance, in areas prone to glaciation, 
mechanical displacements in the geological formations under the pressure of the ice sheet may 
require dedicated modelling (Hutri & Antikainen, 2002). Thus, nuclear waste management 
facilities are often studied by using several simulation models rather than a single tool that 
covers all relevant phenomena. 

Conceptually, a simulation model is a function between the values of input output variables, 
where there can be uncertainty about which values of the input variables are more likely. Once 
these values are fixed, the values of the output variables follow.  

2.2 Bayesian networks

The study of complex systems (like facilities of nuclear waste management are) should build 
on a representation of all the system factors and dependencies thereof. Bayesian networks 
(BN) offer this kind of representation (Jensen, 2001; Pearl & Russell, 2003). For example, the 
BN of Figure 1 (Pearl & Russell, 2003) shows a system where the ground might get slippery. As 
it can be seen, the system factors are modeled as nodes, whose dependencies are indicated by 
directed arcs.  

 

 

Figure 1. Bayesian network with the probabilistic dependencies in a system where the ground might get slippery 
(Pearl & Russell, 2003).

A BN contains independent nodes (i.e., Season in Figure 1) and nodes which depend on 
others as indicated by the arcs (all the remaining ones in Figure 1). Each dependent node is 
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referred to as child, whereby its immediate predecessors in the BN are its parents. For example 
(Figure 1), Sprinkler and Rain are the parents of Wet. 

Each node corresponds to a random variable with discrete states, which, in Figure 1, may 
correspond to the seasons of the year, to the sprinkler being on or off, to rain being falling or 
not, etc. The performance of the system may be assessed through the states of a target node, 
e.g., by evaluating whether the ground is slippery or not in Figure 1. 

In nuclear waste management, the system factors (i.e., the FEPs) usually correspond to 
variables that are not inherently discrete. In this case, as also customary in other fields (Di 
Maio, et al., 2015; Mancuso, et al., 2017), it is possible to proceed with the discretization of 
continuous ranges (Uusitalo, 2007). For instance, the chloride concentration can be in a low, 
medium or high state depending on it belonging to the range [0, 23 g/l), [23 g/l, 46 g/l) or 
[46 g/l, 70 g/l], respectively.  

The parameters of BNs are probabilities. The state probabilities for a dependent node are 
conditioned on the states of its parents. For independent nodes, in turn, the state probabilities 
are marginal. If states are obtained by discretization, there is an approximation error due to 
the loss of information about how the probability density function spreads within each of the 
variable’s discretization ranges (Zwirglmaier & Straub, 2016). 

BNs can be used to calculate the probability of any set of states. By the global semantics 
(Pearl & Russell, 2003) of BNs, the joint probability of the states  of the five 
nodes in Figure 1 is 

 
 

 
This factorization is permitted by the Markov property of BNs, that is, by the fact that the 
probability of a node state does not depend on any previous predecessor once the states of its 
parents are given. 

BNs can also be used for probabilistic inference, that is, for calculating the probability of one 
set of nodes’ states conditioned on new evidence about the states of other nodes. For example, 
one may ask about the probability that the sprinkler is on, given that it is summer and the 
ground is wet. In large BNs, the computation of inferential queries can be so burdensome that 
approximation algorithms may be needed (Pearl, 1987). 

In some applications the structure of the BN is defined a priori, whereas in others the BN is 
the outcome of a data-analysis procedure. In the first case, analysts can use their expertise to 
draw arcs that represent dependencies between the system factors. Then, the BN is filled in 
with probabilities based on data such as historical observations, computer simulations or, 
again, expert beliefs. In the second case, large amounts of data are processed to determine 
which structure of the BN gives the best fit between probabilities and observed frequencies 
(Uusitalo, 2007). 

This dissertation focuses on the first situation, where the BN is based on prior expert 
knowledge. Also, in keeping with earlier works (Käki, et al., 2015; Tolo, et al., 2016), BNs are 
here used for scenario-based risk assessment. Specifically, scenarios are defined as 
combinations of states of the nodes, and risk is estimated as the probability of the target node’s 
state that represents unacceptable consequences (e.g., when “Slippery” is “yes”). This 
probability can also be reproduced as expected disutility (the loss-oriented version of utility) 
by setting the disutility of the unacceptable state of the target node to 100% and that of the 
acceptable ones to 0. 
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2.3 Imprecise information

The probabilities in the BN can be uncertain. In other words, the scarcity and imprecision of 
data may not warrant sufficient evidence to assign exact probability values to them. To 
characterize this epistemic uncertainty - also in other system models like fault trees (Toppila 
& Salo, 2013) – probability bounds can be employed. Then, any function of these probabilities 
will also be interval-valued (Tolo, et al., 2017 (a)), including expected (dis)utilities and risk 
estimates. BNs with interval-valued probabilities may also be referred to as credal networks 
(Mancuso, et al., 2017) or enhanced BNs (Tolo, et al., 2017 (b)). 

One could argue that bounds should be “hard” extremes between which the probability value 
lies with certainty. In the engineering practice, it is common to employ confidence intervals 
based on the frequency with which the event of interest has been observed (Toppila & Salo, 
2013). Still, because they can stem from unbounded distributions like the Gaussian ones, 
confidence intervals for probabilities pose truncation issues. 

At the juncture between frequentist and Bayesian approaches, one may start with a prior 
belief about the event probability and then update this into a posterior estimate based on how 
many times the event has occurred. If the event is modeled as the outcome of a Bernoulli 
process, such posterior is the expected value of a Beta distribution. However, unless there are 
strong reasons for utilizing a point value, uncertainty about the prior needs to be characterized 
as well. 

This is the goal of the Imprecise Beta Model (Walley, 1991), which admits all priors between 
0 and 1. This representation of full ignorance about the prior can be reasonable when studying 
systems like nuclear waste management facilities (especially deep geological repositories). The 
model provides both a lower and an upper Beta distribution for the posterior, which 
correspond to the prior being 0 and 1, respectively, and which encompass all Beta distributions 
that could have been obtained had the prior been fixed. While these bounding distributions 
already characterize epistemic uncertainty, they also make it possible to estimate a probability 
interval with the requisite level of credibility (Walley, 1996). This is analogous to confidence, 
but it does not bear the statistical interpretation of quantifying the chances that the interval 
contains the actual probability value. 

The propagation of the epistemic uncertainty from the probabilities to the risk estimate is a 
crucial but challenging task (Wei, et al., 2021). In this regard, unless bounds correspond to 
hard extremes, the propagation of probability bounds can be questioned for lack of statistical 
guarantees (be it in terms of confidence or credibility) about the resulting interval for risk, or 
any other function of the probabilities (Ferson, et al., 2013). Therefore, researchers have 
suggested the propagation of confidence structures (Balch, 2012; Ferson, et al., 2013). A 
confidence structure consists of two distributions which span all possible distributions for a 
given probability value. Under specific conditions (Ferson, et al., 2013), confidence structures 
coincide with the lower and upper distributions in the Imprecise Beta Model. 

The attractiveness of this approach is that there is no loss of information during the 
propagation, and that bounding distributions can be obtained for the risk estimate, too. At 
present, there are open challenges in propagating confidence structures of dependent variables 
(Beer, et al., 2013). This is the case with the state probabilities which must sum up to 1. While 
confidence structures surely represent a promising area of improvement, this dissertation 
focuses on the propagation of intervals. 

The approach adopted for the Waste Isolation Pilot Plant and Yucca Mountain repositories 
(United States) is also notable. First, probability distributions are defined over the values of 
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the system factors. Then, further distributions are defined for the parameters (means, 
variances, etc.) of the probability distributions of the system factors’ values. 

Lastly, probabilities are not the only quantities affected by epistemic uncertainty. There are 
also parameters which represent the physical and chemical variables in simulation models. It 
is customary to characterize these variables through probability distributions. Section 4.2 
elaborates on the different situations in which these variables are modeled as system factors 
through which to generate scenarios (wherefore their uncertainty should be considered as 
aleatory) or simply treated as model parameters (whereby their uncertainty is epistemic). 

2.4 Cross-impact analysis

Scenarios can be defined as combinations of discrete states of the system factors. Thus, when 
considering all possible combinations of states of all factors, the number of scenarios grows 
exponentially. If there are two factors with three states each, there are 32 = 9 scenarios. With 
five factors the number of scenarios is already 35 = 243. 

This can prove computationally challenging when seeking to derive risk estimates based on 
the assignment of probabilities to the scenarios. Even when scenarios are analyzed 
qualitatively by panels of experts, without any probabilistic characterization, the cognitive 
strain of handling a very large number of scenarios would become overwhelming. 

In qualitatively oriented approaches, it is common to exclude scenarios which contain states 
that are too unlikely to occur together. To enforce this criterion, it is necessary to assess how 
the system factors are interdependent, taking into account synergetic or antagonistic effects 
which increase or decrease, respectively, the likelihood that given pairs of states for the system 
factors occur jointly. 

This is the purpose of cross-impact analysis (Asan & Asan, 2007). One of its developments 
relies on the elicitation of cross-impact terms (Weimer-Jehle, 2006; Weimer-Jehle, 2008). 
Specifically, the cross-impact term associated with the influence of the state x of system factor 
X on the state y of system factor Y is the answer to the following question: “Assuming that 
system factor X is in state x, by how much is the occurrence of the state y of system factor Y 
promoted or hindered?”. This statement is based on integer scales ranging, e.g., from -3 to +3 
so that 0 stands for independence, whereas negative and positive values indicate that the 
influence is of hindrance or promotion, respectively (Weimer-Jehle, 2006). 

Cross-impact terms can be employed to screen out scenarios. The state of each system factor 
can be assigned a score which depends on the sum of the influences from the states of the other 
factors, as quantified by the corresponding cross-impact terms. This score (or cross-impact 
balance) can be taken as a measure of how compatible this state is with the other ones in the 
scenario. A scenario is deemed consistent if none of these scores can be improved by swapping 
the state of the system factor in question (i.e., each factor appears in the scenario with a state 
which is the “most promoted” by the states of the other factors in the scenario). Finally, 
inconsistent scenarios could be excluded from further consideration. This approach can be 
very efficient in reducing the number of scenarios. There are examples in which as few as 3 out 
of 324 scenarios have been retained on the grounds of consistency (Weimer-Jehle, 2006). 

The straightforward dismissal of scenarios can be problematic in risk assessment. The semi-
quantitative scale for assessing the cross-impact balances has no physical interpretation, nor a 
link to the joint probability of the system factors’ states. Even conjecturing a relation between 
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inconsistency and extremely low probability, the exclusion of scenarios from the calculation is 
likely to lead to the underestimation of risk. 

2.5 Risk importance measures

Apart from knowing the overall level of risk in a system, it is important to understand which 
system factors can impair the overall safety performance most. The risk estimate as such does 
not contain enough information to drive actions of risk management aimed at reducing risk, 
or at preventing its rise to unacceptable levels. 

Such information is provided by risk importance measures (Zio, 2011). Dating back to the 
1970s, such measures have been introduced to identify the components (pumps, valves, 
generators, etc.) whose failure could lead to the largest increase in the failure probability of a 
technical system, or whose failure should be prevented with the highest priority to reduce the 
overall failure probability (Barlow & Proschan, 1975; Fussell, 1975; Natvig, 1979). There are 
further measures which consider incremental changes in the component’s failure probability 
rather than its complete failure (Birnbaum, 1969; Borgonovo & Apostolakis, 2001). 

Traditional risk importance measures are tailored to system models like fault trees, in which 
components have Boolean states (“functioning” and “failed”), and dependencies can be 
represented by logical gates. There have been some extensions to multiple states of system 
components (Zio & Podofillini, 2003; Levitin, et al., 2003) and to probabilistic dependencies 
(Noroozian, et al., 2018). Still, these approaches require mapping the states of each component 
to the categories of functioning or failed. 

The labelling of states as “functioning” and “failed” has limitations, for instance, in the 
analysis of noncoherent systems (Beeson & Andrews, 2003; Borgonovo, 2010) where one or 
more components may need to function to cause the system failure (for example because the 
effects of their individual failures would cancel out). 

Moreover, there are systems whose factors cannot be modeled as components that function 
or fail. This holds for complex systems (e.g., nuclear waste management facilities) where the 
interactions between the system factors (i.e., the FEPs) preclude any ex ante declaration of 
failure states. For example, in deep geological repositories, high chloride concentrations can 
cause the corrosion of the copper overpack of the canisters which contain the spent nuclear 
fuel (Posiva Oy, 2012), whereas low concentrations can promote the erosion of the bentonite 
buffer which protects the canister. It is the combination of the actual concentration with low 
or high groundwater flows that determines which level contributes more to the overall risk. 
Before quantitative analyses of these consequences (e.g., by computer simulation), it is not 
obvious which states are riskiest. 
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3. Contributions of the dissertation

This dissertation addresses the challenges in attaining comprehensiveness in scenario analysis 
for nuclear waste management facilities. Specifically, it presents novel probabilistic 
methodologies for scenario-based risk assessment. Based on the findings from the application 
of these methodologies, three main suggestions are given (and discussed in Section 4), namely 
i) modeling systemic dependencies, ii) characterizing uncertainty and iii) ensuring 
transparency. Figure 2 illustrates the flow of the dissertation from the identification of the 
challenges to the suggestions for scenario analysis, and also indicates the scope of the papers 
included in the dissertation. The papers are summarized in Table 1, and presented at more 
depth in sections 3.1 through 3.6. 

 

 

Figure 2. Logical thread of the dissertation and scope of the papers.

Paper 1 identifies three main methodological challenges in scenario analysis. First, it is 
important to construct a system model of the facility and the surrounding environment to 
display all the significant FEPs and their dependencies. Second, comprehensiveness must be 
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evaluated based on a general and widely recognized criterion instead of approach-dependent 
interpretations. Third, it is necessary to characterize several epistemic uncertainties (e.g., 
about probability and parameter values) which aggravate the two previous challenges. 

Paper 2 tackles a case of groundwater contamination at the facility of Saluggia (Italy), where 
spent nuclear fuel used to be stored in water pools. Specifically, it presents a contaminant-
transport model for estimating the time-dependent concentration of radionuclides at a point 
of interest. It also characterizes the uncertainties about the model parameters in the 
simulations of the physical and chemical phenomena that affect a nuclear waste management 
facility and its surrounding environment. It is shown that, due to these epistemic uncertainties, 
the radiological impact of the facility cannot be estimated deterministically even if there is no 
aleatory uncertainty about which scenario will occur. 

In Paper 3, a BN is adopted as a system model where nodes correspond to the FEPs and 
directed arcs represent the probabilistic dependencies between them. The probabilities of the 
FEP states can be obtained from computer simulations and expert beliefs. Epistemic 
uncertainty about the probabilities is characterized with feasible probability regions rather 
than point values. These feasible regions are propagated by multilinear programming to 
estimate the lower and upper bounds of the interval-valued radiological risk. The novel 
adaptive Bayesian sampling algorithm helps prioritize which scenarios to simulate for reducing 
residual uncertainty, that is, the width of the risk interval. In keeping with a generalized 
interpretation presented in this paper, comprehensiveness is achieved in probabilistic 
approaches if the risk interval (i.e., the range of values between two extremes or two quantiles 
of a distribution) does not overlap the predefined risk limit (because it is possible to state 
conclusively whether risk is acceptably low or excessively high). This probabilistic 
methodology is applied to the nuclear waste repository planned for the site of Dessel (Belgium). 
The results suggest that the available data are not sufficient for the attainment of 
comprehensiveness. Paper 3 bis is a data article that illustrates the input for the case study of 
Paper 3.  

Paper 4 tackles the same case study, but without using BNs and their predetermined 
structure of dependencies between the FEPs. Rather, nondirected dependencies between pairs 
of FEP states are characterized by probabilistic cross-impact ratios. Epistemic uncertainty is 
quantified through bounds to these ratios and to the marginal probabilities of the FEP states. 
This approach requires the corresponding risk interval to be calculated with nonlinear-
programming solvers. Results emphasize that ignoring systemic dependencies can lead to 
considerable risk underestimates. 

Finally, Paper 5 deals with transparency in scenario analysis. Estimating the overall risk does 
help assess safety, but is does not in fact identify which scenarios are riskiest in terms of impact 
and/or probability of occurring. Insights in this respect can be gained through risk importance 
measures. Nevertheless, traditional risk importance measures focus on the failure of individual 
system components, a notion which is incompatible with complex systems like nuclear waste 
repositories. Hence, novel risk measures are defined so that they refer to scenarios rather than 
to system components. Two case studies of literature are revisited, where the new measures 
help identify which scenarios contribute most to the overall risk and/or have the largest impact 
if they occur. 
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Table 1. Research objectives, methods and key takeaways from the papers in the dissertation.

 

K
ey

 ta
ke

aw
ay

s 

B
ui

ld
 a

 s
ys

te
m

 m
od

el
, f

in
d 

a 
ge

ne
ra

l i
nt

er
pr

et
at

io
n 

of
 

co
m

pr
eh

en
si

ve
ne

ss
, c

ha
ra

ct
er

iz
e 

ep
is

te
m

ic
 u

nc
er

ta
in

ti
es

.  

E
ve

n 
w

it
ho

ut
 a

le
at

or
y 

un
ce

rt
ai

nt
y 

ab
ou

t t
he

 s
ce

na
ri

os
, e

pi
st

em
ic

 
un

ce
rt

ai
nt

y 
pr

ev
en

ts
 d

et
er

m
in

is
ti

c 
pr

ed
ic

ti
on

. 

To
 e

va
lu

at
e 

co
m

pr
eh

en
si

ve
ne

ss
, 

qu
an

ti
fy

 r
es

id
ua

l u
nc

er
ta

in
ty

 
ab

ou
t r

is
k.

 F
av

or
 p

ro
ba

bi
lis

ti
c 

ov
er

 p
lu

ra
lis

ti
c 

ap
pr

oa
ch

es
.  

Q
ua

nt
ify

 s
ys

te
m

ic
 d

ep
en

de
nc

ie
s,

 
e.

g.
, w

it
h 

pr
ob

ab
ili

st
ic

 c
ro

ss
-

im
pa

ct
 a

na
ly

si
s.

 I
gn

or
in

g 
de

pe
nd

en
ci

es
 c

an
 le

ad
 to

 r
is

k 
un

de
re

st
im

at
io

n.
 

In
 c

om
pl

ex
 s

ys
te

m
s,

 r
es

or
t t

o 
ri

sk
 

im
po

rt
an

ce
 m

ea
su

re
s 

fo
r 

sc
en

ar
io

s 
to

 in
fo

rm
 r

is
k 

m
an

ag
em

en
t.  

M
et

ho
ds

 

R
is

k 
im

po
rt

an
ce

 
m

ea
su

re
s 

- - - - ■
 

C
ro

ss
-i

m
pa

ct
 

an
al

ys
is

 

- - - ■
 

- 

Im
pr

ec
is

e 
in

fo
rm

at
io

n 

- ■
 

■
 

■
 

- 

B
ay

es
ia

n 
ne

tw
or

ks
 

- - ■
 

- ■
 

Si
m

ul
at

io
n 

- ■
 

■
 

- - 

R
es

ea
rc

h 
ob

je
ct

iv
e 

Id
en

ti
fy

in
g 

ch
al

le
ng

es
 

in
 s

ce
na

ri
o 

an
al

ys
is

 

C
ha

ra
ct

er
iz

in
g 

ep
is

te
m

ic
 u

nc
er

ta
in

ty
 

ab
ou

t m
od

el
 

pa
ra

m
et

er
s 

E
va

lu
at

in
g 

co
m

pr
eh

en
si

ve
ne

ss
 

Q
ua

nt
ify

in
g 

sy
st

em
ic

 
de

pe
nd

en
ci

es
 

Id
en

ti
fy

in
g 

th
e 

ri
sk

ie
st

 
sc

en
ar

io
s 

Pa
pe

r 

1 2 3 +
 

3 
bi

s 

4 5 

  



24 

3.1 Paper 1

This paper reviews the literature on the safety assessments of fourteen nuclear waste 
repositories worldwide as well as about scenario analysis at large. Specifically, it discusses key 
aspects of scenario analysis, including the interpretations of comprehensiveness, uncertainties 
and the alternative approaches to conduct scenario analysis. Finally, it identifies challenges for 
methodological contributions. 

The first step in scenario analysis is the identification of the factors that are relevant for 
describing the system. In nuclear waste management, these factors are called features, events 
and processes (FEPs). The second step is to recognize all systemic dependencies between the 
FEPs. This step can be supported by a system model, i.e., a conceptual representation of the 
disposal system as a set of FEPs and dependencies thereof. In a further step, scenarios are 
generated as specific evolutions of the FEPs and, hence, of the system. Taken together, these 
three steps constitute scenario development. Subsequently, in consequence analysis, the 
scenario impacts are quantified, usually by way of computer simulation. 

Completeness in scenario analysis is attained if all possible FEPs and scenarios are identified 
and analyzed. This is deemed unachievable for both cognitive and computational reasons 
(Chapman, et al., 1995). In FEP identification, there is no way of ensuring that risk assessors 
(or experts on their behalf) think of all conceivable factors that may affect the system. In 
scenario generation and consequence analysis, it is not possible to cover the infinite number 
of possible evolutions of the system. 

More reasonably, scenario analysis should therefore aim to ensure comprehensiveness. In 
FEP identification, comprehensiveness requires that all FEPs which can significantly affect the 
system be identified. In scenario generation, there is no widely acknowledged definition of 
comprehensiveness, and thus different approach-dependent interpretations have prevailed. 

Even though comprehensiveness in FEP identification is clear, it is less straightforward to 
evaluate it. Hence, the knowledge accumulated by experts in decades of risk assessments of 
nuclear waste repositories is currently the most reliable way to produce comprehensive lists of 
FEPs. This dissertation seeks to resolve some of the ambiguity about comprehensiveness in 
scenario generation and to develop systematic methodologies to pursue it.  

Other uncertainties than that about the evolution of the system also make it hard to achieve 
comprehensiveness. One is the uncertainty of not having identified all significant FEPs. There 
is also uncertainty about the dependencies between the FEPs. The simulation models utilized 
for analyzing the scenarios are affected by uncertainty about the validity of their underlying 
assumptions. If multiple models are judged valid with regard to a given phenomenon, there is 
uncertainty about which of these models should be employed. Simulation models also contain 
parameters whose values may be uncertain. In probabilistic approaches, the latter 
consideration also extends to probability values. 

The approaches to scenario analysis differ in how scenarios are generated to characterize the 
uncertainty about the system evolution. The pluralistic approach relies on expert judgment to 
formulate a relatively small set of scenarios which represent different assumptions about the 
FEPs and the evolution of the system. The radiological risk is assessed by comparing the 
scenario impacts with a safety threshold. 

The probabilistic approach (an expression which includes a family of techniques) builds on a 
probability space in which i) each elementary event is constituted by a specific joint realization 
of the FEPs (i.e., a specific evolution of the system), ii) a probability distribution is defined over 
this sample space of elementary events, and iii) a scenario is an event, namely a set of 



25 

elementary events. In the risk assessments of the Waste Isolation Pilot Plant (WIPP) and the 
Yucca Mountain repositories (United States), the exploration of these scenarios is carried out 
by repeatedly sampling and simulating FEP realizations from the probability space. The goal 
is to estimate risk as the expected radiological impact (to be checked against the safety 
threshold), and/or the probability that the safety threshold will be violated during the lifetime 
of the repository. 

These two approaches interpret scenarios differently. In the pluralistic approach, a scenario 
is an array of assumptions without probabilities. In the probabilistic approach, a scenario is an 
event in a probability space. As such, it is a set of “similar” elementary events which are 
characterized by the same feature (e.g., the occurrence of an earthquake) whose realization is 
different in each of them (e.g., timing and magnitude of the earthquake). 

In the WIPP and Yucca Mountain assessments, for instance, scenarios are characterized by 
disruptive events like inadvertent drillings of the repository barriers (Galson, et al., 2000), 
earthquakes, volcanic eruptions or waste-package failures (Rechard, et al., 2014). These rare 
events are treated as independent from each other, which is reasonable in this case. This has 
reduced the emphasis on systemic dependencies, to the extent that neither of these 
probabilistic assessments includes a system model. 

In contrast, system models are found in the vast majority of the assessments which follow a 
pluralistic approach. The explanation is that displaying all dependencies between the FEPs 
helps make coherent assumptions when formulating scenarios by expert judgment, as opposed 
to building a mathematical structure such as a probability space. 

The fundamental differences between approaches to scenario analysis also stem from 
alternative views on comprehensiveness. In the pluralistic approach, comprehensiveness is 
interpreted as representativeness, because the scenarios are intended to be representative, 
illustrative, depictions of the possible evolutions of the system. In the probabilistic approaches, 
comprehensiveness refers to the thorough coverage of the probability space in which scenarios 
are generated. In the American assessments above, this coverage is sought through a 
statistically significant size of the Monte Carlo sample. 

Against this backdrop, this paper identifies the following challenges for scenario analysis: 
building a system model; evaluating comprehensiveness; characterizing epistemic 
uncertainties. These challenges are targeted in the remainder of the dissertation, but this paper 
already provides some suggestions. 

For instance, systems models help show why some assessments focus on few specific FEPs. 
Assume, for example, that the dependence of one set of FEPs on another set of independent 
FEPs is fully described by a deterministic simulation model. It would then be possible to 
generate scenarios based on the realizations of the independent FEPs only, whereby the 
evolution of the other FEPs would be uniquely implied by the simulations. Here, the system 
model would highlight the deterministic relation between the two sets of FEPs, thus justifying 
the exclusion of the dependent set from the generation of scenarios.  

The challenge of evaluating comprehensiveness also related to the lack of a widely 
acknowledged definition. This has indirectly encouraged the subjective interpretations in the 
current approaches to scenario analysis. In keeping with the generalized interpretation 
proposed in Paper 3, it is suggested that comprehensiveness is achieved when the results of the 
risk assessment are conclusive, i.e., the introduction of improved information about the 
scenarios cannot revert the conclusions on the safety of the nuclear management facility. 
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The attainment of comprehensiveness calls for the characterization of epistemic 
uncertainties. Yet, is hard to quantify the uncertainty that significant FEPs are missing from 
the assessment (in other words, that the FEP list is not comprehensive). The same 
consideration holds for the uncertainty about having identified all FEP dependencies. Instead, 
the uncertainty about the magnitude of these dependencies can be quantified through 
imprecise values (say, intervals) of the parameters through which they are modeled (be it 
conditional probabilities or cross-impact ratios as in Paper 3 and Paper 4, respectively). The 
characterization of uncertainties concerning the validity of model assumptions is more 
controversial, because risk assessors may feel ill-at-ease quantifying their belief that a model 
is correct (or that is more correct than others). Finally, the uncertainty about the value of model 
parameters can be characterized with probability distributions (see Paper 2). In probabilistic 
approaches, scenario probabilities are also parameters, but there is a variety of techniques that 
can be applied to quantify their uncertainty (see Paper 3). 

3.2 Paper 2

The Eurex research facility at Saluggia (Italy) used to be a temporary storage solution for spent 
nuclear fuel. Nevertheless, in 2004, the regional environmental agency ARPA detected traces 
of 90Sr (a radioactive isotope of strontium) underneath one of the pools which contained the 
spent-fuel bars. The pool was then emptied in 2008, but ARPA’s monitoring campaign between 
2006 and 2014 kept revealing some groundwater concentration of 90Sr at a measurement point 
a few meters from the pool. Although the contamination was limited to shallow depths and 
within the plant boundaries, the presence of the local aqueduct pumps downstream of the 
facility with respect to the main groundwater flow called for an assessment of the radiological 
risk for the public. 

To support such risk assessment, this paper presents a simulation model which reproduces 
the release and transport of 90Sr in groundwater. In this case, rather than generating different 
scenarios, the goal is to simulate the known chain of events that have led to the contamination. 

The model consists of two modules connected in cascade. In the first module, the 
radionuclide release is modeled as a continuous discharge from the cracked bottom of the pool 
between 2004 and 2008. Subsequently, a Kolmogorov-Dimitrev particle-tracking (KDPT) 
algorithm (Marseguerra & Zio, 1997; Giacobbo & Patelli, 2008; Cadini, et al., 2010 (a); Cadini, 
et al., 2010 (b); Cadini, et al., 2012; Cadini, et al., 2013) simulates the migration of 
radionuclides under stationary hydrogeological conditions across both the unsaturated zone 
and the saturated aquifer. The second module post-processes the output of the first one 
through a semi-empirical formula that implements the observed correlation between the 
concentration of 90Sr and the oscillating depth of the water table (i.e., the interface between the 
unsaturated and saturated zone in groundwater). The final outcome of the model is the time-
dependent 90Sr concentration at the point of interest. This model represents a novel application 
of the KDPT algorithm to the unsaturated zone of a field-scale problem. 

The model is calibrated by estimating the value of its six key parameters, namely four 
contaminant-transport variables from the first module and two coefficients in the formula of 
the second module. In particular, a genetic algorithm (GA) (Goldberg, 1989) determines the 
parameter values that minimize the error between the model outcome and the 90Sr 
concentrations observed by ARPA at the monitoring point next to the Eurex pool. 
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Although the GA provides point parameter values, these are actually affected by various 
epistemic uncertainties. One is the imprecision about the concentrations based on which the 
error is minimized: on one hand, those simulated by the model are subject to the Monte Carlo 
error underlying the KDPT algorithm (Echard, et al., 2011); on the other hand, the observed 
ones (used for calibration) are prone to measurement errors. Another uncertainty is the lack 
of guarantees that the GA has found the global minimum of the error. For this reason, point 
parameter values are rejected in favour of reasonably defined probability distributions (e.g., 
Gaussian, Poisson and uniform). 

These distributions are propagated through a crude Monte Carlo procedure in which i) 
realizations are sampled for the parameter values, ii) a simulation is run with these values as 
input to compute the time-dependent 90Sr concentration, iii) the corresponding dose rate to 
the public is computed by way of the expression recommended by the International 
Commission on Radiological Protection (ICRP, 2012), and iii) the previous steps are iterated 
1,000 times. 

Risk is therefore assessed as the time-dependent probability of violating the predefined 
safety threshold on the dose rate (as customary in the safety assessment of nuclear waste 
management facilities, such threshold is taken to be a fraction of the regulatory limit). 
Specifically, for each time instant, this violation probability is estimated as the share of 
simulations in which the threshold is breached. The tasks from model calibration to 
uncertainty propagation are repeated by using different subsets of the dataset of observed 90Sr 
concentrations, showing a satisfactory robustness of the assessment once six out of eight years 
of observations are included. 

In summary, this study constitutes a “degenerate” scenario analysis where the attention is 
entirely put on a single chain of events that is known to have happened. Consequently, the 
aleatory uncertainty about what scenario will occur is ruled out. Yet, there are epistemic 
uncertainties about the values of the parameters in the simulation model which is used for 
reproducing the aforementioned events. These uncertainties impede a deterministic prediction 
of the radiological impact of the nuclear waste management facility, which must be instead 
assessed in terms of risk. 

3.3 Paper 3

Because reaching completeness in scenario analysis is impossible, it is, strictly speaking, 
impossible to estimate risk precisely. In other words, scenario analysis inevitably leaves some 
residual uncertainty about the risk estimate. 
Against this background, this paper posits that comprehensiveness is achieved if residual 
uncertainty is small enough to assess conclusively whether the nuclear waste management 
facility is safe or not. 

The quantification of this residual uncertainty is crucial for evaluating comprehensiveness. 
As shown in this paper, residual uncertainty can be best quantified by probabilistic approaches, 
because they make it possible to estimate a lower and an upper bound for the risk level. 
Depending on how epistemic uncertainty is quantified, these bounds may correspond to the 
quantiles of a distribution or the extremes of an interval. Hence, in probabilistic approaches, 
comprehensiveness is achieved if the range of values delimited by these risk bounds is 
completely below or above the risk limit, because the repository can be conclusively deemed 
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safe or unsafe, respectively (whereas the overlap of risk interval and risk limit would denote 
ambiguity). 

With these premises, a probabilistic methodology is presented to quantify residual 
uncertainty and to evaluate comprehensiveness based on BNs. Specifically, the BN serves as 
system model in which nodes and directed arcs represent the FEPs and dependencies between 
them. The FEPs (chemical concentrations, water flows, etc.) take on discrete states such as low, 
medium and high, with different probabilities. For FEPs which depend on other ones (i.e., 
children and parents, see Section 2.2), these probabilities are conditional. The safety target, 
e.g., the dose rate to the public, is represented by a downstream node. This node has two states, 
which correspond to the respect and the violation of a given safety threshold, respectively. 

A scenario is defined as a combination of states of the FEPs. Its probability is given by the 
joint probability of all its states, which can be calculated from unconditional and conditional 
FEP state probabilities (Section 2.1). Furthermore, for each scenario, there is a corresponding 
conditional probability of leading to the violation of the safety threshold. Subsequently, the 
total probability of the violation state at the safety target is the aggregation of these 
probabilities over all scenarios. This violation probability is taken as an estimate of the 
radiological risk brought by the nuclear waste management facility. 

In an ideal setting, safety could be assessed by comparing the violation probability (i.e., risk 
level) with a maximum acceptable value (i.e., risk limit). However, in real problems, epistemic 
uncertainty implies that probabilities cannot be known precisely, and neither can risk. The 
uncertainty about the state probabilities of the FEPs and of the safety target can be 
characterized with different techniques depending on the source of information. 

One source is represented by computer simulations which describe the dependence of a given 
FEP (or the safety target) on its parents. A simulation can thus be interpreted as a multinomial 
trial, where a given input (set of parents’ states) can result in one out of various possible 
outcomes (states of the child). Here, the uncertainty is that the repeated simulation of the same 
input may give a different result. Accordingly, counters of simulation results can be used for 
estimating conditional probability intervals through the Imprecise Dirichlet Model (Walley, 
1996). 

Another source of probabilistic information is expert judgment (Coppersmith, et al., 2009; 
Dias, et al., 2018; Soares, et al., 2018). In this case, the uncertainty is that two or more experts 
may have different beliefs about the same vector of state probabilities at a given node. This 
diversity can be characterized by admitting all convex combinations of the experts’ beliefs as 
feasible probability values. 

All these epistemic uncertainties about the state probabilities are propagated through the BN 
to quantify the residual uncertainty about the violation probability. Such propagation can be 
framed as an optimization problem in which i) the objective function is the violation 
probability expressed as a function of the state probabilities in the BN, and ii) the feasible 
region is determined by the linear constraints imposed by the bounds to the conditional 
probabilities and the convex hulls of experts’ beliefs. The lower and upper bounds for the 
violation probability are found by solving this optimization problem first as a minimization 
and then as a maximization. Because the violation probability is a multilinear function of the 
state probabilities, the optimization is performed by a routine of multilinear programming that 
combines the simplex and reduced-gradient methods for linear and nonlinear problems, 
respectively. 
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If the corresponding violation probability interval is entirely below the maximum acceptable 
value, then comprehensiveness is achieved because it is possible to infer that the facility is 
sufficiently safe. An interval completely above the limit would instead indicate that the facility 
poses an excessive risk to the public. Such an analysis would equally be comprehensive as the 
conclusion would simply be the opposite. If the violation probability interval overlaps the 
acceptable limit, no conclusion is warranted about the safety of the nuclear waste management 
facility. 

Because a narrower risk interval is less likely to overlap the risk limit, reducing residual 
uncertainty helps pursue comprehensiveness. Operatively, this can be done by acquiring 
additional information. To this end, this paper presents the adaptive Bayesian sampling 
algorithm for prioritizing which combinations of FEP states should be chosen as simulation 
input for tightening the violation probability interval. Analogously, for probabilities elicited by 
expert judgment, a sensitivity analysis based on contraction (Larsson, et al., 2005) is employed 
to identify for which FEPs the attainment of a greater degree of consensus among the experts 
would lead to less residual uncertainty. 

In collaboration with the Belgian centre of nuclear studies SCK∙CEN, the proposed BN-based 
methodology is applied to the near-surface repository planned for the site of Dessel (Belgium). 
For benchmarking, the analysis is first performed following a pluralistic approach, i.e., by 
formulating 13 scenarios based on various assumptions about the loss of functionality of the 
containment barriers. Each scenario is simulated with COMSOL Multiphysics, and the 
resulting dose rate to the public is checked against a safety threshold (taken to be a fraction of 
the regulatory limit). While most scenarios comply with the threshold, few scenarios do lead 
to violations. With this pluralistic approach, though, the lack of a probabilistic characterization 
of the scenarios prevents any quantification of the overall risk level. 

The analysis is repeated by adopting the probabilistic methodology presented in this paper. 
A BN is built to include the FEPs that can significantly affect the evolution of the repository 
barriers. The dependencies between these FEPs are also identified and indicated as directed 
arcs. The safety target is set to be the dose rate to the population, whose violation state 
corresponds to the exceedance of the previously mentioned safety threshold. 

Illustrative probability values for the FEP states are derived from preliminary statistical 
analyses of the SCK∙CEN, and mathematically treated as experts’ beliefs. The results of 
COMSOL simulations are instead used for obtaining bounds to the probabilities of the violation 
state, conditioned on each combination of states of the safety target’s parents. 

Specifically, 1,000 simulations are run by randomly sampling the input FEP states. From the 
simulation results, the corresponding interval for the violation probability can be inferred to 
be [0.003, 0.990]. Successively, the analysis is carried out from the start, this time assigning 
the input of the 1,000 simulations through the adaptive Bayesian sampling algorithm. While 
the violation-probability interval [0.033, 0.856] is much narrower than in the initial set-up, 
the overwhelming residual uncertainty signals that comprehensiveness is not achieved. 

It is estimated that about 50,000 additional simulations would be required to gather a 
stronger knowledge about the violation probability and attain comprehensiveness. 
Nevertheless, it has at least been demonstrated that only a probabilistic approach makes it 
possible to quantify residual uncertainty and assess whether additional information is needed. 
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3.4 Paper 3 bis

This data article reports and illustrates the input data for the case study of Paper 3. First, an 
overview is given of the conceptual model of the nuclear waste repository implemented in the 
COMSOL Multiphysics simulation software, and of its physical and chemical parameters. The 
values of these parameters for the thirteen scenarios analyzed with a pluralistic approach are 
also listed. Then, the development of the BN for modeling the repository with the methodology 
of Paper 3 is illustrated. 

The most significant parameters of COMSOL Multiphysics are taken as FEPs (i.e., the nodes 
of the network). This requires that their ranges of values be discretized into adjacent intervals 
for the definition of the FEP states (e.g., low, medium and high). An exception is the FEP 
“Earthquake” which does not have a corresponding variable in COMSOL Multiphysics, but is 
characterized by the discrete states “Beyond design-basis” and “Major”. 

The FEP state probabilities are also given. For each FEP, two to three assumptions are made 
about the values of the (conditional or unconditional) vector of state probabilities. These 
assumptions correspond to illustrative probability distributions (e.g., log-uniform, log-
triangular) and, in a realistic safety assessment, may represent the beliefs of different experts.  

Finally, the priors for the probability of violating the safety threshold conditioned on each of 
the 576 subscenarios 1 of the safety target (i.e., the dose rate to the public) are listed. These 
priors serve as an input to the adaptive Bayesian sampling algorithm in Paper 3, and employed 
as the frequencies with which violation has been observed in previous runs of the subscenarios 
in COMSOL Multiphysics. 

3.5 Paper 4

In the previous paper the system is modeled as a BN, in which the direction of systemic 
dependencies is predetermined. In reality, the system structure is not always as easy to specify. 
This paper considers systems in which the dependencies between the factors (i.e., the FEPs) 
are not necessarily known. 

To characterize dependencies, this paper presents probabilistic cross-impact ratios. For any 
pair of FEPs and states thereof, this ratio is defined as the joint probability of these states 
divided by the product of the states’ marginal probabilities. 

A cross-impact ratio of 1 denotes independence, because the product of marginal 
probabilities represents the joint probability of the states if the FEPs are stochastically 
independent. Conversely, a larger value is a sign of synergetic effects so that the two states are 
more likely to occur together. When the ratio is lower than 1, instead, there are antagonistic 
effects such that the occurrence of one state diminishes the probability of the other. The 
definition of cross-impact ratios is symmetric in that it does not distinguish which FEP 
influences the other. 

Probabilistic ratios strengthen the methodological foundations to cross-impact analysis by 
enriching the description of the influences between system factors with a probabilistic 
interpretation. In fact, traditional cross-impact analysis relies on assigning a semi-quantitative 
score (known as cross-impact term) to the likelihood of a given pair of system factor states. For 
instance, cross-impact terms are utilized for screening out scenarios which contain states that 
are deemed too unlikely to occur together. Arguably, this criterion is overly strict in that it may 

 
1 In Paper 3, a subscenario at a given node is defined as a combination of states of the node’s parents.
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lead to the outright exclusion of scenarios which, although improbable, can still have a 
nonnegligible contribution to the overall risk (Section 2.4). 

The cross-impact ratios can be written as a function of the scenario probabilities, thus 
creating a link between systemic dependencies and risk. On a side note, the notion of violation 
probability of Paper 3 is here extended to that of expected disutility, i.e., the mean value of the 
disutility (measured on a 0-100% scale) of the scenario impacts. 

Epistemic uncertainties about the cross-impact ratios can be quantified by placing bounds. 
Along with those for the marginal probabilities of the FEP states, such bounds can be encoded 
in an optimization problem in which the risk expression becomes the objective function to be 
minimized and maximized to find the lower and upper risk bounds, respectively. This 
notwithstanding, these optimization problems can be even harder than in Paper 3 because the 
bounds to the ratios, when expressed in terms of the scenario probabilities, involve nonlinear 
constraints (wherefore the task can be carried out by state-of-the-art approaches). 

The proposed approach is applied to the same repository as in Paper 3 to measure risk as the 
probability that the dose rate to the public violates a given safety threshold. The interpretation 
from the viewpoint of expected disutility is that dose rates below and above the safety threshold 
have 0 and 100% disutility, respectively. 

The case study is nonetheless revisited, in that the FEPs which compose the system are no 
longer organized in a structured network. Also, while Paper 3 focuses on the decision-making 
implications of the residual uncertainty about risk, this paper investigates the sensitivity of the 
risk estimate to varying information about systemic dependencies. Towards this goal, the BN 
of Paper 3 is employed as a source of probabilistic data. Three alternative settings are analyzed, 
each one comprising increasingly detailed information. These settings are compared with 
respect to the risk upper bound. 

The first setting includes bounds about the marginal probabilities of the FEP states only. 
These are calculated by i) repeatedly sampling realizations of the joint probability distribution 
underlying the BN and, hence, of the scenario probabilities, ii) computing the corresponding 
values of the marginal probabilities and iii) taking the bounds in correspondence of predefined 
sample quantiles. No constraint is set to the cross-impact ratios. The FEPs are thus allowed to 
have any synergetic dependence that may increase the chances of unacceptable radiological 
impacts. As a result, the upper risk bound is 0.576. 

The second setting also includes the dependencies between a selected set of FEPs (namely, 
the dependent FEPs connected by directed arcs in the BN). Bounds for cross-impact ratios 
associated with pairs of these FEPs’ states are calculated with the same procedure based on 
sample quantiles as above. Once these constraints are implemented in the problem, the upper 
bound of the risk level becomes 0.571. 

The third and last setting reproduces the dependence structure of the BN, by also enforcing 
the independence about the remaining FEPs (namely, the FEPs with no arc pointing towards 
them in the BN). Although this would imply the cross-impact ratios between the states of these 
and all other FEPs to be exactly 1, such constraints are relaxed by admitting narrow bounds 
around the unit value. The dependencies that can be established in the system are more limited 
than in the two previous setting, so that the risk upper bound drops to 0.427. 

 In summary, the biggest decrease in the risk level is here observed when the assumption of 
independence is introduced. This result emphasizes that independence should only be 
modeled when there is solid evidence and/or knowledge of the system under assessment. 
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3.6 Paper 5

Probabilistic approaches may be lacking in transparency if the focus is exclusively on the 
overall risk level. It is also important to understand which specific scenarios contribute most 
to risk, so that risk-management actions can be taken to avoid them. Even if the baseline risk 
is acceptable, identifying the riskiest scenarios supports transparency. 

Risk importance measures (RIMs) are useful in this regard as they help identify those system 
components whose failure can compromise the safety performance of the overall system most. 
Nevertheless, while they are suitable for devices such as valves, pumps and generators, 
traditional RIMs do not apply to complex systems whose components’ states cannot be ex ante 
mapped to the classifiers “functioning” or “failed”. In nuclear waste management, for instance, 
the probability with which a given FEP state leads to the violation of the safety target may 
largely depend on the states of other FEPs. 

To overcome this limitation, this paper presents RIMs for scenarios. Specifically, several 
traditional RIMs are redefined so that their argument is not a system component but a scenario 
(i.e., a combination of FEP states). Hence, these novel measures enable the analysis of systems 
in which i) the FEPs have multiple states (i.e., they are not binary), ii) the system structure and 
underlying probability distribution is modeled by a BN and iii) risk is estimated as an expected 
disutility (thus, not necessarily in binary terms of safety versus failure either). In this 
framework, the epistemic uncertainty about the probabilities in the network is not taken into 
account. 

In particular, the following RIMs for scenarios are defined. The risk achievement worth 
(RAW) quantifies the relative risk change once the scenario is assumed to occur; the risk 
reduction worth (RRW) quantifies the relative risk change once the scenario is assumed not to 
occur; the Birnbaum importance (BI) quantifies the risk change in response to an incremental 
increase in a scenario probability (it also represents the difference between the updated risk 
levels once the scenario is assumed to occur and not to occur, respectively); the criticality index 
(CI) equals the BI multiplied by the scenario probability, but it also constitutes a 
rearrangement of the RRW (i.e., the inverse of 1 minus the RRW); lastly, the risk share (RS) 
quantifies the percentage of overall risk contributed by the scenario. 

Although these measures are different functions of the scenario probabilities and impacts, 
they are mutually consistent in that they all identify the same set of risky scenarios. Each RIM 
has a limit value dividing the risky scenarios from the safer ones (e.g., RAW larger than 1, and 
RS larger than the scenario probability). The paper shows that, if a scenario exceeds this limit 
value for a measure, then it does for the remaining ones as well. 

While identifying the same set of risky scenarios, the different measures may lead to different 
rankings of these risky scenarios. For any chosen measure, the riskiest scenario is defined as 
the one with the largest value. Nonetheless, even for a system of moderate size, the number of 
scenarios can be so large that the search of the riskiest one by explicit enumeration may be 
computationally infeasible. For an efficient search, optimization problems are formulated such 
that i) the objective function (to be maximized) is an expression of the chosen RIM as a function 
of binary variables through which scenarios can be formed by inclusion (value of 1) and 
exclusion (0) of the various FEP states, and ii) constraints can be placed to bound the search 
to specific scenarios (focusing, e.g., on a restricted set of FEPs, or on causal scenarios which 
indicate how specific states of a FEP are followed by specific states of its dependent FEPs). 

These are mixed-integer linear programming problems, which can be solved through tailored 
algorithms. Scenario rankings are obtained by carrying out the optimization repeatedly, each 
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time adding a constraint that prevents the previously found scenario to be picked as the one 
which maximizes the chosen RIM. 

The novel RIMs for scenarios are first tested on a literature case study where the system 
components’ states can in fact be characterized as functioning or failed. The results are 
consistent with the original study, thus demonstrating the generality of the new measures. 

The second case study represents the mechanisms which can cause human errors in the 
storage of spent nuclear fuel at the site of Sizewell (United Kingdom). This is a more complex 
system, not amenable to be studied with traditional RIMs. In turn, in keeping with earlier 
literature findings (Groth & Mosleh, 2011; Groth & Mosleh, 2012), the novel RIMs shed light 
on the scenario in which knowledgeable operators may have an increased risk of errors due to 
an overconfident attitude. 

Building on the results from the case studies, some guidelines are given on using the RIMs 
for scenarios in risk management. For instance, the overall risk can be reduced by 
implementing actions to exclude scenarios with either or both high RRW and RS. To choose 
which specific FEP states to prevent when trying to exclude a scenario, RIMs may be used in 
combination. For example, risk managers should make sure to prevent FEP states which, when 
analyzed as scenarios in their own right, have a RAW larger than 1. Apart from this combined 
use, excluding scenarios with high RAW serves for risk avoidance more than risk reduction. In 
this case, the purpose would be to eliminate scenarios which would have an enormous impact 
if they were to occur, even if they do not contribute much to risk due to their very low 
probability. Finally, in order to exclude a scenario, it is possible to act on dependencies rather 
than preventing FEP states altogether. In practice, especially if this implies a reduced use of 
resources, one could focus on zeroing the probability of the risky FEP state only in cascade of 
another specific FEP state. 
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4. Concluding perspectives

Based on the insights from the papers of Section 3, suggestions are given on how to achieve 
comprehensiveness in scenario analysis for risk assessment. In particular, it is important to i) 
model systemic dependencies, ii) characterize uncertainty and iii) ensure transparency. These 
suggestions are discussed in sections 4.2 through 4.1. Finally, Section 4.4 highlights some 
research topics to be further developed. While the main viewpoint is that of nuclear waste 
management, recommendations are intended to be valid for other fields as well. 

4.1 Modeling systemic dependencies

System models represent the nuclear waste management facility as a set of FEPs and 
dependencies thereof (see Paper 1). The graphical representation (e.g., a network) is 
parameterized through a mathematical quantification of these systemic dependencies. 

In BNs, conditional probabilities indicate changes in the likelihood of a given FEP state due 
to changes in the state of other FEPs (see Paper 3). The novel risk importance measures for 
scenarios (see Paper 5) help detect increased risk levels if a given FEP state occurs in 
combination or sequence with a specific state of another FEP. Alternatively, probabilistic 
cross-impact ratios (see Paper 4) can be elicited to capture synergetic (or antagonistic) 
dependencies between FEPs such that specific pairs of their states are more (or less) likely to 
occur together. 

If the system factors are assumed to be independent even if they are not, risk can be 
underestimated. In the example of Paper 4 where independence is enforced between some 
FEPs, the radiological risk is almost 34% lower than when there are dependencies between 
these FEPs. 

Another example is the simple BN of Figure 3, in which nodes A, B and C have binary states 
0 and 1. Risk can be assessed as the overall probability of the unacceptable state “Vio” at node 
D. At node A (Figure 3, left), assume that the probability mass of both states 0 and 1 is 0.5. 
Further assume that the states of B and C are the same as that of A. Finally, assume the 
conditional probability of state “Vio” at node D is 1 if B and C are both in state 1, and 0 
otherwise. This network structure implies the overall probability of state “Vio” to be the 
probability of state 1 at node A, which is therefore 50%. Suppose now that the dependence 
between nodes B and C through A is neglected (Figure 3, right), and that the probabilities of 
their states 0 and 1 are taken to have their marginal values in the previous network, i.e., 50% 
each. Then, the overall violation probability at node D becomes that of B and C both being in 
state 1, thus dropping down to 25%. 
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Figure 3. Bayesian network with (left) and without (right) considering possible systemic dependencies.

4.2 Characterizing uncertainty

Quantifying uncertainty is important for risk-informed decision making. Helton et al. (2000) 
note that the “disclosure of uncertainty enables the scientific reviewer, as well as the decision 
maker, to evaluate the degree of confidence that one should have in the risk assessment”. Also, 
uncertainty “may not be critical if the confidence intervals about the risk estimate (…) are 
clearly below regulatory levels of concern” (Helton, et al., 2000). In turn, if the risk “intervals 
overlap the regulatory levels of concern, consideration should be given to reduce the 
uncertainty in the risk estimate” (Helton, et al., 2000). This idea has lost momentum in 
nuclear waste management, where, especially in Europe, the pluralistic approach has 
continued to prevail (see Paper 1). 

Uncertainty can be best quantified with probabilistic approaches. Probabilities are suitable 
for characterizing aleatory uncertainty about which states of the FEPs (i.e., the relevant factors 
for describing the evolution of the nuclear waste management facility) and scenarios are more 
likely. Epistemic uncertainties, too, can be characterized by probability distributions. 

With this in mind, one issue is how to characterize the uncertainty related to a given variable, 
such as the water flow, or the distribution coefficient which quantifies the tendency of water 
contaminants to adsorb onto the particles of the porous material they flow through. In Paper 
3 both are modeled as FEPs, meaning that the probability distributions over their states are a 
characterization of aleatory uncertainty. In Paper 2, though, the same variables are simulation-
model parameters, whose distributions are instead an expression of epistemic uncertainty. 
What is the rationale of this apparent contradiction? 

Sumerling et al. (1993) suggest that variables without considerable uncertainty need not be 
modeled as FEPs. More generally, if the risk assessor intends to use a variable in scenario 
generation (as in Paper 3), then this variable should be treated as a FEP. Modeling variables 
that can be targeted in risk management as FEPs helps identify which of their states appear in 
the riskiest scenarios and should therefore be prevented. Conversely, variables that are deemed 
of no relevance for scenario generation can be modeled as “mere” parameters. If there is no 
interest to define scenarios in the first place, for example when the analysis regards a single 
chain of known events as in Paper 2, no variable needs to be a FEP. 

The flexibility of modeling the uncertainty about a variable as aleatory or epistemic is 
consistent with the model-oriented categorization of uncertainty discussed in Section 1.2. Once 
uncertainties have been characterized, and distinguished between aleatory and epistemic 
accordingly, risk assessors can show the effects of these uncertainties (separately) in the results 
of the risk assessment. 

B C

D

B C

D

A



37 

In this respect, Paper 2 highlights that, even in the absence of aleatory uncertainty, the 
epistemic uncertainty does not allow for the deterministic prediction of the radiological 
impact. The latter should then be quantified through a risk estimate, e.g., an expected value or 
a violation probability. When there are both types of uncertainty, their effect can be shown 
separately by also quantifying the imprecision in the risk estimate itself. 

For example, in the risk assessment of the Yucca Mountain repository, probability 
distributions are defined to characterize the aleatory uncertainty about the arrival of disruptive 
events (volcanic eruptions, earthquakes, etc.), so that risk is estimated as the expected value of 
the dose rate to the public. In turn, epistemic uncertainty is characterized by defining 
probability distributions for the parameters (e.g., means and variances) of these probability 
distributions. The implication is that the expected value of the radiological impact becomes a 
random variable itself. Then, uncertainty is propagated through double-loop Monte Carlo 
sampling (Helton & Sallaberry, 2009) to estimate the expected value of the expected value of 
the dose rate to the public. 

In Paper 3 the uncertainty about the risk estimate is named residual, because it is what 
remains after the epistemic uncertainties in the model are quantified and propagated to the 
risk estimate. Building on Helton et al. (2000), it is therefore suggested that 
comprehensiveness in scenario analysis is achieved if residual uncertainty is sufficiently small 
to assess conclusively whether the risk level is acceptable or not. This is intended as a 
generalized interpretation of comprehensiveness, in contrast to the subjective interpretations 
found in current approaches to scenario analysis. 

Paper 3 considers nonprobabilistic characterizations of uncertainty. Specifically, it proposes 
a hybrid model in which aleatory uncertainty and risk are quantified through probabilities, but 
the epistemic uncertainty about these probabilities is characterized by imprecise values (i.e., 
bounds). In general, probabilities may be argued to be the most suitable variables for 
characterizing aleatory uncertainty. Then, risk assessors may evaluate in each specific risk 
assessment which technique best suits the characterization of the epistemic uncertainty about 
these variables. 

Pluralistic approaches are less suitable than probabilistic ones to characterize uncertainty, 
quantify residual uncertainty and evaluate comprehensiveness. Still, in applications where the 
attention is mostly placed on scenario impacts, they can provide valuable insights about the 
system response through various what-if scenarios. To take an example outside nuclear waste 
management, the results of financial institutions can be stress-tested under the assumption of 
severe economical shocks. Here, rather than by the FEPs, the system factors are represented 
by macroeconomic variables such as GDP growth, unemployment rate and inflation. 

Yet, without scenario probabilities, it is not possible to define a quantitative estimate of the 
overall risk in the system, let alone quantify the residual uncertainty. A risk estimate is instead 
essential when there are higher stakes, such as the safety of the public exposed to the 
radioactive releases of a nuclear waste management facility. 

4.3 Ensuring transparency

There is much discussion on whether showing uncertainty can decrease (Siegrist, 2019) or not 
(Van der Bles, et al., 2020) the lay stakeholder’s trust in a risk assessment. In any case, it can 
be argued that communicating uncertainty is an act of transparency. 
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From this viewpoint, the pluralistic approach has the merit of distinctly displaying the 
radiological impact of each scenario. Probabilistic approaches, instead, may be perceived as 
black boxes that produce an overall risk estimate without clarifying the contribution of 
different scenarios. 

Hence, along with the overall risk level, it is advisable to calculate risk importance measures 
for scenarios (see Paper 5). A set of such measures exists, each one being a specific function of 
the probability and impact of a given scenario. Thus, scenarios can be ranked and targeted in 
risk management based on how risky they are. 

Probabilistic approaches are also criticized on the grounds that any risk estimate would be 
essentially meaningless (Chapman, et al., 1995). The uncertainty about the impact of FEPs that 
have been overlooked in the risk assessment would be incomparably larger than the aleatory 
and epistemic uncertainties quantified in the risk estimate. It is useful to revisit this claim by 
drawing a line between comprehensiveness in FEP identification and comprehensiveness in 
scenario generation. 

In scenario generation, the risk in the system is assessed based on the probabilities and 
impacts of the scenarios. As previously discussed, comprehensiveness can be evaluated by 
quantifying the uncertainty about these quantities (probabilities, impacts and risk). This 
presumes that the system is exhaustively represented by the set of FEPs which have been 
identified. This is why at the earlier stage of FEP identification comprehensiveness requires 
that all the FEPs which can significantly affect the repository be included in the risk 
assessment (see Paper 1). 

Because comprehensiveness at the FEP level cannot be evaluated quantitatively, risk 
assessors are advised to guarantee transparency. Transparency can be attained by building a 
system model in which the nuclear waste management facility is represented as a set of FEPs. 
Especially when in a graphical form, a system model gives a clear view on which FEPs have 
been included in the risk assessment. The separation between comprehensiveness in FEP 
identification and scenario generation allows risk assessors to first do their best to identify the 
most significant FEPs, and then to estimate risk and evaluate comprehensiveness within the 
system represented by these FEPs. 

4.4 Further research avenues

There are several further research topics. The first one is represented by the black-striped 
area of Figure 2, in which the three boxes with the suggestions for scenario analysis overlap. 
This would require a unified methodology that embraces the three recommendations above at 
the same time. Such a methodology could be still based on a BN, but where risk importance 
measures (RIMs) for scenarios are calculated taking imprecise probabilities into account. 
Here, a double challenge would arise from the optimization models by which the RIMs are 
computed. One is that the problems would become mixed-integer nonlinear programmes and, 
as such, much harder to solve. The other is that the RIMs would also be interval-valued, 
wherefore the ranking of the risky scenarios may not be unique. A solution may be to import 
the concept of dominance from the realm of decision making and identify the set of non-risk-
dominated scenarios. Specifically, these scenarios would be deemed riskier than the others in 
spite of the imprecision in the RIMs. 

Second, the BNs in this dissertation are static, as they imply a unique causal flow from the 
independent FEPs to the dependent ones and, hence, to the safety target. This does not 
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explicitly capture feedback loops between the FEPs even if these appear in the evolution of 
nuclear waste repositories. To account for these cyclic dependencies and to evaluate their effect 
over the lifetime of the system, dynamic BNs (Poropudas & Virtanen, 2011; Mancuso, et al., 
2019) can be developed. 

Third, BNs need not be employed as a system model. For instance, with no prior knowledge 
of the systemic dependencies, a very large number of computer-simulation runs may be 
produced to span as many possible scenarios depicting alternative ways in which the nuclear 
waste management facility could evolve. Then, one may post-processing these scenarios to 
examine which patterns of combinations and sequences of FEPs realizations have most impact 
(Antonello, et al., 2020). This post-processing may build on data-mining techniques, possibly 
drawing from the recent family of approaches for integrated deterministic and probabilistic 
safety assessment (Zio, 2014). The use of these techniques requires i) simulation models of the 
dependencies between all relevant FEPs (limiting any need for expert judgments to the 
probability distributions of the simulation input, i.e., the values of the independent FEPs), and 
ii) sufficient computational power to run a vast number of simulations in a useful time. 

Fourth, the probability distributions of the input variables (namely, FEPs and other physical-
chemical parameters) employed in computer simulations could be defined based on extreme-
value theory (Cirillo & Taleb, 2016; Cirillo & Taleb, 2020). For instance, in fat-tail 
distributions, the probability mass decays so slowly towards the distribution tail(s) that 
extreme values are not negligible in risk assessments. 

Assume that, as an effect of fat-tailed input variables, the dose rate to the public also has a 
fat-tail distribution, say, a power law. Then, it can be the case that the sample mean after 999 
simulations is 0.24 mSv/y, and the (estimated) probability of violating the regulatory 
threshold of 1 mSv/y is 0.029 2. Further, assume that the dose rate in the 1000th simulation is 
8,937 mSv/y (an amount which, absorbed in a short time lapse, compares to those experienced 
by workers in the Chernobyl accident; oecd-nea.org/chernobyl). Here, the combined use of 
sample mean and violation probability fails to give a well-rounded characterization of risk. In 
fact, the violation probability only rises to 0.030, whereas the sample mean rises to 9.18 mSv/y. 
This is because fat-tailed random variables may not even have well-defined expected values 
(like in this example, where all moments are infinite), causing the sample mean to converge 
too slowly, or not to converge at all, to be a stable indicator. 

Extreme-value theory implies that the focus of risk assessment is shifted from expected 
values to maxima. This may lead to more demanding requirements for the design of the nuclear 
waste management facility (Montonen, et al., 2020). If there is no evidence that the input 
variables of the risk assessment should be modeled as fat-tailed (for example if normal 
distributions show a better fit with observed frequencies), these requirements may create 
tensions between the safety authority and the agency in charge of constructing the facility. 

A compromise may be to i) perform a risk assessment with distributions consistent with 
historical data and/or expert judgments (hence, not necessarily fat-tailed) to inform the 
licensing decision, and then ii) repeat the assessment by using a probabilistic what-if analysis 
in which fat-tailed distributions are assumed regardless of the evidence. Rather than for 
approving the barrier design, the results of the second assessment may be used to elaborate 
mitigation strategies against catastrophic outcomes (e.g., by writing an evacuation plan for the 

 
2 These figures are produced by sampling from a power-law distribution with slope coefficient = 2 and minimum value 0.05 

mSv/y.
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population in case of large radioactive releases instead of increasing the thickness of the waste 
containers by ten times). 
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