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M.L.S. Definition

The decision version of the maximum independent set (M.1.S.) problem:
o Given: A constant P and a graph G = (V, E).

@ Question: Is there a subset S C V such that (i) no two members of
S are adjacent to each other, and (ii) |S| > P?

e n=|V|, 1< P (integer) < n.

@ The decision version of M.1.S. is known to be NP-complete.

2/19



M.L.S. Definition

The decision version of the maximum independent set (M.1.S.) problem:
o Given: A constant P and a graph G = (V, E).

@ Question: Is there a subset S C V such that (i) no two members of
S are adjacent to each other, and (ii) |S| > P?

e n=|V|, 1< P (integer) <n.
@ The decision version of M.1.S. is known to be NP-complete.
0-1 Integer Program for M.I.S.
Maximise Z1 = > .. \(F})
Fi+F < 1V(ij)€E (1)

F e {01} VjeV.

F; = 1 if vertex j € (Independent set S), and zero otherwise.

Ind. Set S={jeV|F=1}
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Integer solution: For every vertex i € V, F; is either zero or one.
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Binary Search

Integer solution: For every vertex i € V, F; is either zero or one.

Binary search approach: Do a binary search on the value of k for the
following problem:

Fi+F < 1V(ij)€eE
Fi e {0,1} VjeV (2)
Zjev(’:j) = k.
(Is there an independent set in G of size k?)

k=1,2,428, ---,n

3/19



Binary Search

Integer solution: For every vertex i € V, F; is either zero or one.

Binary search approach: Do a binary search on the value of k for the
following problem:

Fi+F < 1V(ij)€eE
Fi e {0,1} VjeV (2)
Zjev(’:j) = k.
(Is there an independent set in G of size k7)
k=1,2428, -, n
Linear relaxation:
Fi+F < 1V(ijeE
VjieV,0<F <1 (3)
ZjeV(Fj) = k.

How to find an integer solution to the Linear relaxation?
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Approach 1: Valid Inequalities

o Clique inequalities: For a clique of size k, add:
Xe1 + Xe2 + -0 -+ Xek S 1.

@ Cycle inequalities: For a cycle of size k, add:

X1 + Xe2 + -+ 0+ Xek S I_k/2J
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Approach 1: Valid Inequalities

o Clique inequalities: For a clique of size k, add:
Xel + X2 + 0+ Xk < 1.

@ Cycle inequalities: For a cycle of size k, add:
Xe1 + X2 + -+ xe < | k/2].

o Adding Valid Inequalities improved the rate at which integer
solutions were obtained.
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Approach 2: Find an integer solution to the Linear
relaxation

Find a function g(x) such that an integer solution is the least cost
solution to the Linear relaxation.
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Approach 2: Find an integer solution to the Linear
relaxation

Find a function g(x) such that an integer solution is the least cost
solution to the Linear relaxation.

Linear relaxation:

xi+x <1V (i,j))eE, 0<x<1(VjeV), > .,(x) = k
Every vertex is a bin.  Amount in bin j = x;.

Function value for bin j = g(x;).

Minimise Z = 3.\, &(x)-

X = (x1, X2, *+*, Xn)
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(Needed) If for solution X, the function g achieves its minimum, then X
should be an integer solution.
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Approach 2: Find an integer solution to the Linear
relaxation
Find a function g(x) such that an integer solution is the least cost
solution to the Linear relaxation.
Linear relaxation:
xi+x <1V (i,j))eE, 0<x<1(VjeV), > .,(x) = k
Every vertex is a bin.  Amount in bin j = x;.
Function value for bin j = g(x;).
Minimise Z = 3.\, &(x)-
X = (x1, X2, *+*, Xn)

(Needed) If for solution X, the function g achieves its minimum, then X
should be an integer solution.

Helpful if g is a convex function; because a local min. is also a global
min. for convex functions.

The sum of 2 convex functions is also a convex function.
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Polynomial functions

b b b
gl(X):34X4+33X3+32X2+31X+C—i-*l-l-%%—%—i—%.
x  x?2 x3 x

&(x) = agx* + a3x® + apx? + arx + C + bo/x + b3 /x + by/x.
(0<x<1) — (0<w<x<1).
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Polynomial functions

b b b
gl(X):~94)<4—|'£773X3-i-32X2-l-~91X~G-C-I-fl-l-g2 %—i—%.

x  x2 x3  x
go(x) = agx* 4 a3x® 4 apx® 4+ a1x + C + bov/x + b3/x + bgi/x.

(0<x<1) — (0<w<x<1).

Convexity:

Set the second derivative condition g;’'(x) > 0 as a constraint (or
g4 (x) > 0, whichever you use).

- for several values of x in the (0, 1) interval.

Outcome:

For g1, obtained convex functions for small values of n, but not for
n = 150.

For g, obtained convex functions with n = 256 (but depends on w).
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Two stage process

Two stage process (to find integer optimal solution):

(a) Pick a value for w. Find coefficients a;, b; and C that satisfy certain
conditions in LP form.

(If it doen’t work, try a different value of w.)
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Two stage process

Two stage process (to find integer optimal solution):

(a) Pick a value for w. Find coefficients a;, b; and C that satisfy certain
conditions in LP form.

(If it doen’t work, try a different value of w.)

(b) Use the coefficients to solve a (continuous) minimisation problem:

Minimise Z =} .., g(x;)
xi+x < (14+w) V(i,j)eE
vVjeV,0<w<x <1
dYlev Xi = k+(n—k)w.

(binary search on k)

7/19



Condition 1 to determine coefficients a;, b; and C

(1) Consider a bin (a vertex) i with a unit sized item (x; = 1) and
another bin with x; = w. (Total =1 + w)

Rearranging (1 + w) into [(0.9) + (w + 0.1)] should be more expensive.
g(1) + g(w) < g(0.9) + g(w+0.1).
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Condition 1 to determine coefficients a;, b; and C

(1) Consider a bin (a vertex) i with a unit sized item (x; = 1) and
another bin with x; = w. (Total =1 + w)

Rearranging (1 + w) into [(0.9) + (w + 0.1)] should be more expensive.
g(1) + g(w) < g(0.9) + g(w+0.1).

g(l) + g(w) + eps < g(0.9) + g(w+0.1).

2(0.9) + g(w +0.1) — g(1) — g(w) > eps.

(1
(
g(0.95) + g(w + 0.05) — g(1) — g(w) > eps.
(
(
(

X

)—&(1) -
g(0.85) + g(w + 0.15) — g(1) — g(w) > eps
£(0.75) + g(w + 0.25) — g(1) — g(w) > eps.
g(0.65) + g(w + 0.35) — g(1) — g(w) > eps.
g(0.55) + g(w + 0.45) — g(1) — g(w) > eps.
<1)

A
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Condition 1 to determine coefficients a;, b; and C

(actually we did it slightly differently)

wi =14+ w.

Convex combination of wy = p(1) + g(w), p+g=1and p,q > 0.
8(0.9m1) + g(0.1w1) — g(1) — g(w) = eps.
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Condition 1 to determine coefficients a;, b; and C

(actually we did it slightly differently)

wi =14+ w.

Convex combination of wy = p(1) + g(w), p+g=1and p,q > 0.
8(0.9m1) + g(0.1w1) — g(1) — g(w) = eps.

g(0.95w;) + g(0.05w1) — g(1) — g(w) > eps.
£(0.85w1) + g(0.15w1) — g(1) — g(w
g(0.8w1) + g(0.2wy) — g(1) — g(w)
£(0.7ma) + g(0.3m1) — g(1) — g(w)
g(0.6w1) + g(0.4w1) — g(1) — g(w)
2*g(0.5w1) — g(1) — g(w) > eps.
(w<x<1)

> eps.
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Condition 2 to determine coefficients a;, b; and C

w < item size in a bin < 1.
Example: Consider one unit-sized bin and 5 w-sized bins.

Total volume =1 + 5w.
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Condition 2 to determine coefficients a;, b; and C

w < item size in a bin < 1.
Example: Consider one unit-sized bin and 5 w-sized bins.
Total volume =1 + 5w.

Distribute this into 6 items (to be placed in 6 bins) of size (1 + 5w)/6
each.

6g[(1+5w)/6] — g(1) — 5g(w) = eps.
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Condition 2 to determine coefficients a;, b; and C

w < item size in a bin < 1.
Example: Consider one unit-sized bin and 5 w-sized bins.
Total volume =1 + 5w.

Distribute this into 6 items (to be placed in 6 bins) of size (1 + 5w)/6
each.

681(1 + 5w) /6] — g(1) — 5g(w) > eps.
5g[(1+ 4w)/5] — g(1) — 4g(w) = eps.
3g1(1+3w)/4] - g(1) - 3g(w

10g[(1 -+ 9w)/10]  g(1) — 9g(w) > eps.
20g[(1 4+ 19w)/20] — g(1) — 19g(w) > eps.
40g[(1 + 39w)/40] — g(1) — 39g(w) > eps.

) > eps.
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Condition 3 to determine coefficients a;, b; and C

Desired solution:
The unit-sized items occupy k bins. Total volume = (1)(k) = k.

The w-sized items occupy the remaining (n — k) bins. Total volume =
(w)(n—k) = nw — kw.
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Condition 3 to determine coefficients a;, b; and C

Desired solution:
The unit-sized items occupy k bins. Total volume = (1)(k) = k.

The w-sized items occupy the remaining (n — k) bins. Total volume =
(w)(n—k) = nw — kw.

Condition 3 example:

Break every unit-sized item into p (=5) equal pieces of size 1/p (=0.2)
each.

So now these 0.2 sized items occupy more bins (5k, not k).

The remaining volume of nw — kw should be squeezed into fewer bins,
that is, (n — 5k) bins, NOT (n — k) any more.
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Condition 3 to determine coefficients a;, b; and C

Desired solution:
The unit-sized items occupy k bins. Total volume = (1)(k) = k.

The w-sized items occupy the remaining (n — k) bins. Total volume =
(w)(n—k) = nw — kw.

Condition 3 example:

Break every unit-sized item into p (=5) equal pieces of size 1/p (=0.2)
each.

So now these 0.2 sized items occupy more bins (5k, not k).

The remaining volume of nw — kw should be squeezed into fewer bins,
that is, (n — 5k) bins, NOT (n — k) any more.

. L S nw — kw
Fewer bins — so size in each bin will increase from w to zz = —————

5k x g(0.2) + (n—5k) x g(z5) — kx g(1) — (n — k) x g(w) > eps.

Similarly, for various values of p, as long as w < x; < 1.

n—5k
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LP to determine coefficients

Combining all conditions, we get an LP with the coefficients a;, a», a3,
as, C, by, by, bs and by as the unknowns.

For a given (n, k) combination, we experiment with different values of w
and eps — pick the (w, eps) for which we get a feasible solution to the LP.
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For a given (n, k) combination, we experiment with different values of w
and eps — pick the (w, eps) for which we get a feasible solution to the LP.

Does this process — finding coefficients for a given (n, k) — need to run
in polynomial time?

Perhaps not; once we have the coefficients for a given (n, k), in principle,
we can re-use them for numerous instances (in step 2) for which n and k
are the same.
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LP to determine coefficients

Combining all conditions, we get an LP with the coefficients a;, a,, a3,
as, C, by, by, bs and by as the unknowns.

For a given (n, k) combination, we experiment with different values of w
and eps — pick the (w, eps) for which we get a feasible solution to the LP.

Does this process — finding coefficients for a given (n, k) — need to run
in polynomial time?

Perhaps not; once we have the coefficients for a given (n, k), in principle,
we can re-use them for numerous instances (in step 2) for which n and k
are the same.

Software used:
Step 1 (Linear Program): GLPK first, Gurobi later.
Step 2 (Non-linear Minimisation): MINOS.
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Step 2: Minimise a non-linear function to get an integer
solution

Desired solution value = (k)g(1) + (n — k)g(w). (known)
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Step 2: Minimise a non-linear function to get an integer

solution

Desired solution value = (k)g(1) + (n — k)g(w). (known)

Minimise Z = 3.\, g(x))
xi+x < (1+w) V(i,j)eE
diev X = k+(n—kKw
Yjev 8(x) = (K)g(1) + (n—k)g(w)
VjeV,0<w<x < L

MINOS optimisation is sensitive to the initial solution.

We used x; =1 (for every i) as the initial solution.
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What if we are unable to find an integer solution for k7

@ During binary search, what if we are unable to find an integer
solution for k7

Can we conclude that the optimal solution value is < k7

No, unfortunately (not yet) :-(
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What if we are unable to find an integer solution for k7

@ During binary search, what if we are unable to find an integer
solution for k?

Can we conclude that the optimal solution value is < k7
No, unfortunately (not yet) :-(

@ Not necessary to obtain a (w, 1) solution.
For an edge (3, 7), x3 + x7 < (1 + w).

If x3 > 0.5(1 4+ w), which means that x; < 0.5(1 4+ w)
— include vertex 3 in the independent set, but not 7.

True for every neighbour of vertex 3 in the graph.
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Instances Tested

@ A 25-vertex instance: Convex function in Step 1, and integer
optimal solutions in Step 2.
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Instances Tested

@ A 25-vertex instance: Convex function in Step 1, and integer
optimal solutions in Step 2.

@ A 150-vertex instance with opt 29: No convex function in Step 1;

For k =20, w = 0.008, obtained integer solution. (using function
81)

For k = 29, obtained non-integer solution which can be easily
converted to an integer solution. (using function g, and an initial
solution for 5/150 vertices).
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81)

For k = 29, obtained non-integer solution which can be easily
converted to an integer solution. (using function g, and an initial
solution for 5/150 vertices).

@ A b3-vertex instance with opt 26:

For 10 < k < 26, we obtained integer solution with the parameters
from the 150-vertex instance (but with slightly different w = 0.19).
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Instances Tested

@ A 25-vertex instance: Convex function in Step 1, and integer
optimal solutions in Step 2.

@ A 150-vertex instance with opt 29: No convex function in Step 1;

For k =20, w = 0.008, obtained integer solution. (using function
81)

For k = 29, obtained non-integer solution which can be easily
converted to an integer solution. (using function g, and an initial
solution for 5/150 vertices).

@ A b3-vertex instance with opt 26:

For 10 < k < 26, we obtained integer solution with the parameters
from the 150-vertex instance (but with slightly different w = 0.19).

@ A 256-vertex instance with opt 30:

For (k < 22): Able to re-use the parameters (AND the
corresponding function g;) from the 150-vertex instance.

(k = 30): Testing continues.
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LP polytope: Generate functions to get integer solution?

Point A is the integer solution that we desire. If A is in the interior, then
NO matter what function g you use, there are an infinite number of
feasible solutions with g(X) = 100! (A is NOT unique)

g(X) = 100
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Generating functions for integer solutions - 2

But luckily, x* =1 for at least one j € V. (x; <1.)

Every feasible integer solution X is a vertex of the LP polytope. X =
(x1, - -+, xn) = (zeroes and ones).

So there is hope that we can design a function whose intersection with
the LP polytope is just a “small” region around X*.

114) Il
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[g(X) = constant value]
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3-SAT (Satisfiability) Model

Recently, we started modelling the M.1.S. as a Satisfiability problem
(3-SAT, in particular).

You can follow the results on Researchgate:

https://www.researchgate.net/publication/380034972
(the 3-SAT approach)

https://www.researchgate.net/publication/361555319
(the continuous non-linear optimisation approach)
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Thank you for listening!
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