Maximum independent set (stable set) problem:
 Computational testing and a Satisfiability (3-SAT) model

Prabhu Manyem (retired)
College of Science
Nanchang Institute of Technology
Nanchang, China

M.I.S. Definition

The decision version of the maximum independent set (M.I.S.) problem:

- Given: A constant P and a graph $G=(V, E)$.
- Question: Is there a subset $S \subseteq V$ such that (i) no two members of S are adjacent to each other, and (ii) $|S| \geq P$?
- $n=|V|, \quad 1 \leq P$ (integer) $\leq n$.
- The decision version of M.I.S. is known to be NP-complete.

M.I.S. Definition

The decision version of the maximum independent set (M.I.S.) problem:

- Given: A constant P and a graph $G=(V, E)$.
- Question: Is there a subset $S \subseteq V$ such that (i) no two members of S are adjacent to each other, and (ii) $|S| \geq P$?
- $n=|V|, \quad 1 \leq P($ integer $) \leq n$.
- The decision version of M.I.S. is known to be NP-complete.

0-1 Integer Program for M.I.S.

$$
\begin{align*}
\text { Maximise } Z_{1} & =\sum_{j \in V}\left(F_{j}\right) \\
F_{i}+F_{j} & \leq 1 \forall(i, j) \in E \tag{1}\\
F_{j} & \in\{0,1\} \forall j \in V
\end{align*}
$$

$F_{j}=1$ if vertex $j \in($ Independent set $S)$, and zero otherwise.
Ind. Set $S=\left\{j \in V \mid F_{j}=1\right\}$.

Binary Search

Integer solution: For every vertex $i \in V, F_{i}$ is either zero or one.

Binary Search

Integer solution: For every vertex $i \in V, F_{i}$ is either zero or one.
Binary search approach: Do a binary search on the value of k for the following problem:

$$
\begin{align*}
F_{i}+F_{j} & \leq 1 \forall(i, j) \in E \\
F_{j} & \in\{0,1\} \forall j \in V \tag{2}\\
\sum_{j \in V}\left(F_{j}\right) & =k .
\end{align*}
$$

(Is there an independent set in G of size k ?)
$k=1,2,4,8, \cdots, n$.

Binary Search

Integer solution: For every vertex $i \in V, F_{i}$ is either zero or one.
Binary search approach: Do a binary search on the value of k for the following problem:

$$
\begin{align*}
F_{i}+F_{j} & \leq 1 \forall(i, j) \in E \\
F_{j} & \in\{0,1\} \forall j \in V \tag{2}\\
\sum_{j \in V}\left(F_{j}\right) & =k .
\end{align*}
$$

(Is there an independent set in G of size k ?)
$k=1,2,4,8, \cdots, n$.
Linear relaxation:

$$
\begin{gather*}
F_{i}+F_{j} \leq 1 \quad \forall(i, j) \in E \\
\forall j \in V, 0 \leq F_{j} \leq 1 \tag{3}\\
\sum_{j \in V}\left(F_{j}\right)=k .
\end{gather*}
$$

How to find an integer solution to the Linear relaxation?

Approach 1: Valid Inequalities

- Clique inequalities: For a clique of size k, add:

$$
x_{c 1}+x_{c 2}+\cdots+x_{c k} \leq 1 .
$$

- Cycle inequalities: For a cycle of size k, add:

$$
x_{c 1}+x_{c 2}+\cdots+x_{c k} \leq\lfloor k / 2\rfloor .
$$

Approach 1: Valid Inequalities

- Clique inequalities: For a clique of size k, add:

$$
x_{c 1}+x_{c 2}+\cdots+x_{c k} \leq 1 .
$$

- Cycle inequalities: For a cycle of size k, add:

$$
x_{c 1}+x_{c 2}+\cdots+x_{c k} \leq\lfloor k / 2\rfloor .
$$

- Adding Valid Inequalities improved the rate at which integer solutions were obtained.

Approach 2: Find an integer solution to the Linear relaxation

Find a function $g(x)$ such that an integer solution is the least cost solution to the Linear relaxation.

Approach 2: Find an integer solution to the Linear relaxation

Find a function $g(x)$ such that an integer solution is the least cost solution to the Linear relaxation.

Linear relaxation:
$x_{i}+x_{j} \leq 1 \forall(i, j) \in E, \quad 0 \leq x_{j} \leq 1(\forall j \in V), \quad \sum_{j \in V}\left(x_{j}\right)=k$.
Every vertex is a bin. Amount in bin $j=x_{j}$.
Function value for bin $j=g\left(x_{j}\right)$.
Minimise $Z=\sum_{j \in V} g\left(x_{j}\right)$.
$X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.

Approach 2: Find an integer solution to the Linear relaxation

Find a function $g(x)$ such that an integer solution is the least cost solution to the Linear relaxation.

Linear relaxation:
$x_{i}+x_{j} \leq 1 \forall(i, j) \in E, \quad 0 \leq x_{j} \leq 1(\forall j \in V), \quad \sum_{j \in V}\left(x_{j}\right)=k$.
Every vertex is a bin. Amount in bin $j=x_{j}$.
Function value for bin $j=g\left(x_{j}\right)$.
Minimise $Z=\sum_{j \in V} g\left(x_{j}\right)$.
$X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.
(Needed) If for solution X, the function g achieves its minimum, then X should be an integer solution.

Approach 2: Find an integer solution to the Linear relaxation

Find a function $g(x)$ such that an integer solution is the least cost solution to the Linear relaxation.

Linear relaxation:
$x_{i}+x_{j} \leq 1 \forall(i, j) \in E, \quad 0 \leq x_{j} \leq 1(\forall j \in V), \quad \sum_{j \in V}\left(x_{j}\right)=k$.
Every vertex is a bin. Amount in bin $j=x_{j}$.
Function value for bin $j=g\left(x_{j}\right)$.
Minimise $Z=\sum_{j \in V} g\left(x_{j}\right)$.
$X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.
(Needed) If for solution X, the function g achieves its minimum, then X should be an integer solution.

Helpful if g is a convex function; because a local min. is also a global min. for convex functions.

The sum of 2 convex functions is also a convex function.

Polynomial functions

$$
\begin{gathered}
g_{1}(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+C+\frac{b_{1}}{x}+\frac{b_{2}}{x^{2}}+\frac{b_{3}}{x^{3}}+\frac{b_{4}}{x^{4}} . \\
g_{2}(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+C+b_{2} \sqrt{x}+b_{3} \sqrt[3]{x}+b_{4} \sqrt[4]{x} . \\
(0 \leq x \leq 1) \longrightarrow(0<w \leq x \leq 1)
\end{gathered}
$$

Polynomial functions

$$
\begin{gathered}
g_{1}(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+C+\frac{b_{1}}{x}+\frac{b_{2}}{x^{2}}+\frac{b_{3}}{x^{3}}+\frac{b_{4}}{x^{4}} \\
g_{2}(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+C+b_{2} \sqrt{x}+b_{3} \sqrt[3]{x}+b_{4} \sqrt[4]{x} \\
(0 \leq x \leq 1) \longrightarrow(0<w \leq x \leq 1)
\end{gathered}
$$

Convexity:
Set the second derivative condition $g_{1}^{\prime \prime}(x)>0$ as a constraint (or $g_{2}^{\prime \prime}(x)>0$, whichever you use).

- for several values of x in the $(0,1)$ interval.

Outcome:
For g_{1}, obtained convex functions for small values of n, but not for $n=150$.

For g_{2}, obtained convex functions with $n=256$ (but depends on w).

Two stage process (to find integer optimal solution):
(a) Pick a value for w. Find coefficients a_{i}, b_{j} and C that satisfy certain conditions in LP form.
(If it doen't work, try a different value of w.)

Two stage process (to find integer optimal solution):
(a) Pick a value for w. Find coefficients a_{i}, b_{j} and C that satisfy certain conditions in LP form.
(If it doen't work, try a different value of w.)
(b) Use the coefficients to solve a (continuous) minimisation problem:

$$
\begin{gather*}
\text { Minimise } Z=\sum_{j \in V} g\left(x_{j}\right) \\
x_{i}+x_{j} \leq(1+w) \forall(i, j) \in E \\
\forall j \in V, 0<w \leq x_{j} \leq 1 \tag{4}\\
\sum_{j \in V} x_{j}=k+(n-k) w .
\end{gather*}
$$

(binary search on k)

Condition 1 to determine coefficients a_{i}, b_{j} and C

(1) Consider a bin (a vertex) i with a unit sized item $\left(x_{i}=1\right)$ and another bin with $x_{j}=w$. (Total $\left.=1+w\right)$
Rearranging $(1+w)$ into $[(0.9)+(w+0.1)]$ should be more expensive.
$g(1)+g(w)<g(0.9)+g(w+0.1)$.

Condition 1 to determine coefficients a_{i}, b_{j} and C

(1) Consider a bin (a vertex) i with a unit sized item $\left(x_{i}=1\right)$ and another bin with $x_{j}=w$. (Total $\left.=1+w\right)$
Rearranging $(1+w)$ into $[(0.9)+(w+0.1)]$ should be more expensive.
$g(1)+g(w)<g(0.9)+g(w+0.1)$.
$g(1)+g(w)+e p s \leq g(0.9)+g(w+0.1)$.

Condition 1 to determine coefficients a_{i}, b_{j} and C

(1) Consider a bin (a vertex) i with a unit sized item $\left(x_{i}=1\right)$ and another bin with $x_{j}=w$. (Total $\left.=1+w\right)$
Rearranging $(1+w)$ into $[(0.9)+(w+0.1)]$ should be more expensive.
$g(1)+g(w)<g(0.9)+g(w+0.1)$.
$g(1)+g(w)+e p s \leq g(0.9)+g(w+0.1)$.
$g(0.9)+g(w+0.1)-g(1)-g(w) \geq e p s$.

Condition 1 to determine coefficients a_{i}, b_{j} and C

(1) Consider a bin (a vertex) i with a unit sized item $\left(x_{i}=1\right)$ and another bin with $x_{j}=w$. (Total $\left.=1+w\right)$
Rearranging $(1+w)$ into $[(0.9)+(w+0.1)]$ should be more expensive.
$g(1)+g(w)<g(0.9)+g(w+0.1)$.
$g(1)+g(w)+e p s \leq g(0.9)+g(w+0.1)$.
$g(0.9)+g(w+0.1)-g(1)-g(w) \geq e p s$.
$g(0.95)+g(w+0.05)-g(1)-g(w) \geq e p s$.
$g(0.85)+g(w+0.15)-g(1)-g(w) \geq e p s$.
$g(0.75)+g(w+0.25)-g(1)-g(w) \geq e p s$.
$g(0.65)+g(w+0.35)-g(1)-g(w) \geq e p s$.
$g(0.55)+g(w+0.45)-g(1)-g(w) \geq e p s$.
$\left(w \leq x_{i} \leq 1\right)$

Condition 1 to determine coefficients a_{i}, b_{j} and C

(actually we did it slightly differently)
$w_{1}=1+w$.
Convex combination of $w_{1}=p(1)+q(w), p+q=1$ and $p, q \geq 0$.
$g\left(0.9 w_{1}\right)+g\left(0.1 w_{1}\right)-g(1)-g(w) \geq e p s$.

Condition 1 to determine coefficients a_{i}, b_{j} and C

(actually we did it slightly differently)
$w_{1}=1+w$.
Convex combination of $w_{1}=p(1)+q(w), p+q=1$ and $p, q \geq 0$.
$g\left(0.9 w_{1}\right)+g\left(0.1 w_{1}\right)-g(1)-g(w) \geq e p s$.
$g\left(0.95 w_{1}\right)+g\left(0.05 w_{1}\right)-g(1)-g(w) \geq e p s$.
$g\left(0.85 w_{1}\right)+g\left(0.15 w_{1}\right)-g(1)-g(w) \geq e p s$.
$g\left(0.8 w_{1}\right)+g\left(0.2 w_{1}\right)-g(1)-g(w) \geq e p s$.
$g\left(0.7 w_{1}\right)+g\left(0.3 w_{1}\right)-g(1)-g(w) \geq e p s$.
$g\left(0.6 w_{1}\right)+g\left(0.4 w_{1}\right)-g(1)-g(w) \geq e p s$.
$2^{*} g\left(0.5 w_{1}\right)-g(1)-g(w) \geq e p s$.
$\left(w \leq x_{i} \leq 1\right)$

Condition 2 to determine coefficients a_{i}, b_{j} and C

$w \leq$ item size in a bin ≤ 1.
Example: Consider one unit-sized bin and $5 w$-sized bins.
Total volume $=1+5 w$.

Condition 2 to determine coefficients a_{i}, b_{j} and C

$w \leq$ item size in a bin ≤ 1.
Example: Consider one unit-sized bin and $5 w$-sized bins.
Total volume $=1+5 \mathrm{w}$.
Distribute this into 6 items (to be placed in 6 bins) of size $(1+5 w) / 6$ each.
$6 g[(1+5 w) / 6]-g(1)-5 g(w) \geq e p s$.

Condition 2 to determine coefficients a_{i}, b_{j} and C

$w \leq$ item size in a bin ≤ 1.
Example: Consider one unit-sized bin and $5 w$-sized bins.
Total volume $=1+5 \mathrm{w}$.
Distribute this into 6 items (to be placed in 6 bins) of size $(1+5 w) / 6$ each.
$6 g[(1+5 w) / 6]-g(1)-5 g(w) \geq e p s$.
$5 g[(1+4 w) / 5]-g(1)-4 g(w) \geq e p s$.
$4 g[(1+3 w) / 4]-g(1)-3 g(w) \geq e p s$.
$10 g[(1+9 w) / 10]-g(1)-9 g(w) \geq e p s$.
$20 g[(1+19 w) / 20]-g(1)-19 g(w) \geq e p s$.
$40 g[(1+39 w) / 40]-g(1)-39 g(w) \geq e p s$.

Condition 3 to determine coefficients a_{i}, b_{j} and C

Desired solution:

The unit-sized items occupy k bins. Total volume $=(1)(k)=k$.
The w-sized items occupy the remaining $(n-k)$ bins. Total volume $=$ $(w)(n-k)=n w-k w$.

Condition 3 to determine coefficients a_{i}, b_{j} and C

Desired solution:

The unit-sized items occupy k bins. Total volume $=(1)(k)=k$.
The w-sized items occupy the remaining $(n-k)$ bins. Total volume $=$ $(w)(n-k)=n w-k w$.
Condition 3 example:
Break every unit-sized item into $p(=5)$ equal pieces of size $1 / p(=0.2)$ each.

So now these 0.2 sized items occupy more bins ($5 k$, not k).
The remaining volume of $n w-k w$ should be squeezed into fewer bins, that is, $(n-5 k)$ bins, NOT $(n-k)$ any more.

Condition 3 to determine coefficients a_{i}, b_{j} and C

Desired solution:

The unit-sized items occupy k bins. Total volume $=(1)(k)=k$.
The w-sized items occupy the remaining $(n-k)$ bins. Total volume $=$ $(w)(n-k)=n w-k w$.

Condition 3 example:

Break every unit-sized item into $p(=5)$ equal pieces of size $1 / p(=0.2)$ each.

So now these 0.2 sized items occupy more bins ($5 k$, not k).
The remaining volume of $n w-k w$ should be squeezed into fewer bins, that is, $(n-5 k)$ bins, NOT $(n-k)$ any more.
Fewer bins - so size in each bin will increase from w to $z_{5}=\frac{n w-k w}{n-5 k}$.
$5 k * g(0.2)+(n-5 k) * g\left(z_{5}\right)-k * g(1)-(n-k) * g(w) \geq e p s$.
Similarly, for various values of p, as long as $w \leq x_{i} \leq 1$.

LP to determine coefficients

Combining all conditions, we get an LP with the coefficients a_{1}, a_{2}, a_{3}, $a_{4}, C, b_{1}, b_{2}, b_{3}$ and b_{4} as the unknowns.

For a given (n, k) combination, we experiment with different values of w and eps - pick the ($w, e p s$) for which we get a feasible solution to the LP.

LP to determine coefficients

Combining all conditions, we get an LP with the coefficients a_{1}, a_{2}, a_{3}, $a_{4}, C, b_{1}, b_{2}, b_{3}$ and b_{4} as the unknowns.

For a given (n, k) combination, we experiment with different values of w and eps - pick the ($w, e p s$) for which we get a feasible solution to the LP.

Does this process - finding coefficients for a given (n, k) - need to run in polynomial time?

Perhaps not; once we have the coefficients for a given (n, k), in principle, we can re-use them for numerous instances (in step 2) for which n and k are the same.

LP to determine coefficients

Combining all conditions, we get an LP with the coefficients a_{1}, a_{2}, a_{3}, $a_{4}, C, b_{1}, b_{2}, b_{3}$ and b_{4} as the unknowns.

For a given (n, k) combination, we experiment with different values of w and eps - pick the ($w, e p s$) for which we get a feasible solution to the LP.

Does this process - finding coefficients for a given (n, k) - need to run in polynomial time?

Perhaps not; once we have the coefficients for a given (n, k), in principle, we can re-use them for numerous instances (in step 2) for which n and k are the same.

Software used:
Step 1 (Linear Program): GLPK first, Gurobi later.
Step 2 (Non-linear Minimisation): MINOS.

Step 2: Minimise a non-linear function to get an integer solution

Desired solution value $=(k) g(1)+(n-k) g(w) . \quad($ known $)$

Step 2: Minimise a non-linear function to get an integer solution

Desired solution value $=(k) g(1)+(n-k) g(w) . \quad($ known $)$

$$
\begin{gather*}
\text { Minimise } Z=\sum_{j \in V} g\left(x_{j}\right) \\
x_{i}+x_{j} \leq(1+w) \forall(i, j) \in E \\
\sum_{j \in V} x_{j}=k+(n-k) w \tag{5}\\
\sum_{j \in V} g\left(x_{j}\right)=(k) g(1)+(n-k) g(w) \\
\forall j \in V, 0<w \leq x_{j} \leq 1 .
\end{gather*}
$$

MINOS optimisation is sensitive to the initial solution.
We used $x_{i}=1$ (for every i) as the initial solution.

- During binary search, what if we are unable to find an integer solution for k ?

Can we conclude that the optimal solution value is $<k$?
No, unfortunately (not yet) :-(

What if we are unable to find an integer solution for k ?

- During binary search, what if we are unable to find an integer solution for k ?

Can we conclude that the optimal solution value is $<k$?
No, unfortunately (not yet) :-(

- Not necessary to obtain a ($\mathbf{w}, \mathbf{1}$) solution.

For an edge $(3,7), x_{3}+x_{7} \leq(1+w)$.
If $x_{3}>0.5(1+w)$, which means that $x_{7}<0.5(1+w)$
\longrightarrow include vertex 3 in the independent set, but not 7 .
True for every neighbour of vertex 3 in the graph.

Instances Tested

- A 25-vertex instance: Convex function in Step 1, and integer optimal solutions in Step 2.

Instances Tested

- A 25-vertex instance: Convex function in Step 1, and integer optimal solutions in Step 2.
- A 150-vertex instance with opt 29: No convex function in Step 1; For $k=20, w=0.008$, obtained integer solution. (using function g_{1})

For $k=29$, obtained non-integer solution which can be easily converted to an integer solution. (using function g_{2} and an initial solution for $5 / 150$ vertices).

Instances Tested

- A 25-vertex instance: Convex function in Step 1, and integer optimal solutions in Step 2.
- A 150-vertex instance with opt 29: No convex function in Step 1; For $k=20, w=0.008$, obtained integer solution. (using function g_{1})

For $k=29$, obtained non-integer solution which can be easily converted to an integer solution. (using function g_{2} and an initial solution for $5 / 150$ vertices).

- A 53-vertex instance with opt 26 :

For $10 \leq k \leq 26$, we obtained integer solution with the parameters from the 150 -vertex instance (but with slightly different $w=0.19$).

Instances Tested

- A 25-vertex instance: Convex function in Step 1, and integer optimal solutions in Step 2.
- A 150-vertex instance with opt 29: No convex function in Step 1;

For $k=20, w=0.008$, obtained integer solution. (using function g_{1})

For $k=29$, obtained non-integer solution which can be easily converted to an integer solution. (using function g_{2} and an initial solution for $5 / 150$ vertices).

- A 53-vertex instance with opt 26 :

For $10 \leq k \leq 26$, we obtained integer solution with the parameters from the 150 -vertex instance (but with slightly different $w=0.19$).

- A 256 -vertex instance with opt 30 :

For ($k \leq 22$): Able to re-use the parameters (AND the corresponding function g_{1}) from the 150-vertex instance.
($k=30$): Testing continues.

LP polytope: Generate functions to get integer solution?

Point A is the integer solution that we desire. If A is in the interior, then NO matter what function g you use, there are an infinite number of feasible solutions with $g(X)=100$! (A is NOT unique)

Generating functions for integer solutions - 2

But luckily, $x_{i}^{*}=1$ for at least one $i \in V . \quad\left(x_{i} \leq 1.\right)$
Every feasible integer solution X is a vertex of the LP polytope. $X=$ $\left(x_{1}, \cdots, x_{n}\right)=$ (zeroes and ones).

So there is hope that we can design a function whose intersection with the LP polytope is just a "small" region around X^{*}.

$$
[g(X)=\text { constant value }]
$$

Recently, we started modelling the M.I.S. as a Satisfiability problem (3-SAT, in particular).

You can follow the results on Researchgate:
https://www.researchgate.net/publication/380034972 (the 3-SAT approach)
https://www.researchgate.net/publication/361555319 (the continuous non-linear optimisation approach)

Thank you for listening!

