
Maximum independent set (stable set) problem:
Computational testing and a Satisfiability

(3-SAT) model

Prabhu Manyem (retired)
College of Science

Nanchang Institute of Technology
Nanchang, China

1 / 19



M.I.S. Definition

The decision version of the maximum independent set (M.I.S.) problem:

Given: A constant P and a graph G = (V ,E ).

Question: Is there a subset S ⊆ V such that (i) no two members of
S are adjacent to each other, and (ii) |S | ≥ P?

n = |V |, 1 ≤ P (integer) ≤ n.

The decision version of M.I.S. is known to be NP-complete.

0-1 Integer Program for M.I.S.

Maximise Z1 =
∑

j∈V (Fj)

Fi + Fj ≤ 1 ∀ (i , j) ∈ E

Fj ∈ {0, 1} ∀ j ∈ V .

(1)

Fj = 1 if vertex j ∈ (Independent set S), and zero otherwise.

Ind. Set S = { j ∈ V | Fj = 1}.

2 / 19



M.I.S. Definition

The decision version of the maximum independent set (M.I.S.) problem:

Given: A constant P and a graph G = (V ,E ).

Question: Is there a subset S ⊆ V such that (i) no two members of
S are adjacent to each other, and (ii) |S | ≥ P?

n = |V |, 1 ≤ P (integer) ≤ n.

The decision version of M.I.S. is known to be NP-complete.

0-1 Integer Program for M.I.S.

Maximise Z1 =
∑

j∈V (Fj)

Fi + Fj ≤ 1 ∀ (i , j) ∈ E

Fj ∈ {0, 1} ∀ j ∈ V .

(1)

Fj = 1 if vertex j ∈ (Independent set S), and zero otherwise.

Ind. Set S = { j ∈ V | Fj = 1}.

2 / 19



Binary Search

Integer solution: For every vertex i ∈ V , Fi is either zero or one.

Binary search approach: Do a binary search on the value of k for the
following problem:

Fi + Fj ≤ 1 ∀ (i , j) ∈ E

Fj ∈ {0, 1} ∀ j ∈ V∑
j∈V (Fj) = k .

(2)

(Is there an independent set in G of size k?)

k = 1, 2, 4, 8, · · · , n.

Linear relaxation:

Fi + Fj ≤ 1 ∀ (i , j) ∈ E

∀ j ∈ V , 0 ≤ Fj ≤ 1∑
j∈V (Fj) = k.

(3)

How to find an integer solution to the Linear relaxation?

3 / 19



Binary Search

Integer solution: For every vertex i ∈ V , Fi is either zero or one.

Binary search approach: Do a binary search on the value of k for the
following problem:

Fi + Fj ≤ 1 ∀ (i , j) ∈ E

Fj ∈ {0, 1} ∀ j ∈ V∑
j∈V (Fj) = k .

(2)

(Is there an independent set in G of size k?)

k = 1, 2, 4, 8, · · · , n.

Linear relaxation:

Fi + Fj ≤ 1 ∀ (i , j) ∈ E

∀ j ∈ V , 0 ≤ Fj ≤ 1∑
j∈V (Fj) = k.

(3)

How to find an integer solution to the Linear relaxation?

3 / 19



Binary Search

Integer solution: For every vertex i ∈ V , Fi is either zero or one.

Binary search approach: Do a binary search on the value of k for the
following problem:

Fi + Fj ≤ 1 ∀ (i , j) ∈ E

Fj ∈ {0, 1} ∀ j ∈ V∑
j∈V (Fj) = k .

(2)

(Is there an independent set in G of size k?)

k = 1, 2, 4, 8, · · · , n.

Linear relaxation:

Fi + Fj ≤ 1 ∀ (i , j) ∈ E

∀ j ∈ V , 0 ≤ Fj ≤ 1∑
j∈V (Fj) = k .

(3)

How to find an integer solution to the Linear relaxation?
3 / 19



Approach 1: Valid Inequalities

Clique inequalities: For a clique of size k , add:

xc1 + xc2 + · · ·+ xck ≤ 1.

Cycle inequalities: For a cycle of size k , add:

xc1 + xc2 + · · ·+ xck ≤ ⌊k/2⌋.

Adding Valid Inequalities improved the rate at which integer
solutions were obtained.

4 / 19



Approach 1: Valid Inequalities

Clique inequalities: For a clique of size k , add:

xc1 + xc2 + · · ·+ xck ≤ 1.

Cycle inequalities: For a cycle of size k , add:

xc1 + xc2 + · · ·+ xck ≤ ⌊k/2⌋.

Adding Valid Inequalities improved the rate at which integer
solutions were obtained.

4 / 19



Approach 2: Find an integer solution to the Linear
relaxation

Find a function g(x) such that an integer solution is the least cost
solution to the Linear relaxation.

Linear relaxation:

xi + xj ≤ 1 ∀ (i , j) ∈ E , 0 ≤ xj ≤ 1 (∀ j ∈ V ),
∑

j∈V (xj) = k.

Every vertex is a bin. Amount in bin j = xj .

Function value for bin j = g(xj).

Minimise Z =
∑

j∈V g(xj).

X = (x1, x2, · · · , xn).

(Needed) If for solution X , the function g achieves its minimum, then X
should be an integer solution.

Helpful if g is a convex function; because a local min. is also a global
min. for convex functions.

The sum of 2 convex functions is also a convex function.

5 / 19



Approach 2: Find an integer solution to the Linear
relaxation

Find a function g(x) such that an integer solution is the least cost
solution to the Linear relaxation.

Linear relaxation:

xi + xj ≤ 1 ∀ (i , j) ∈ E , 0 ≤ xj ≤ 1 (∀ j ∈ V ),
∑

j∈V (xj) = k.

Every vertex is a bin. Amount in bin j = xj .

Function value for bin j = g(xj).

Minimise Z =
∑

j∈V g(xj).

X = (x1, x2, · · · , xn).

(Needed) If for solution X , the function g achieves its minimum, then X
should be an integer solution.

Helpful if g is a convex function; because a local min. is also a global
min. for convex functions.

The sum of 2 convex functions is also a convex function.

5 / 19



Approach 2: Find an integer solution to the Linear
relaxation

Find a function g(x) such that an integer solution is the least cost
solution to the Linear relaxation.

Linear relaxation:

xi + xj ≤ 1 ∀ (i , j) ∈ E , 0 ≤ xj ≤ 1 (∀ j ∈ V ),
∑

j∈V (xj) = k.

Every vertex is a bin. Amount in bin j = xj .

Function value for bin j = g(xj).

Minimise Z =
∑

j∈V g(xj).

X = (x1, x2, · · · , xn).

(Needed) If for solution X , the function g achieves its minimum, then X
should be an integer solution.

Helpful if g is a convex function; because a local min. is also a global
min. for convex functions.

The sum of 2 convex functions is also a convex function.

5 / 19



Approach 2: Find an integer solution to the Linear
relaxation

Find a function g(x) such that an integer solution is the least cost
solution to the Linear relaxation.

Linear relaxation:

xi + xj ≤ 1 ∀ (i , j) ∈ E , 0 ≤ xj ≤ 1 (∀ j ∈ V ),
∑

j∈V (xj) = k.

Every vertex is a bin. Amount in bin j = xj .

Function value for bin j = g(xj).

Minimise Z =
∑

j∈V g(xj).

X = (x1, x2, · · · , xn).

(Needed) If for solution X , the function g achieves its minimum, then X
should be an integer solution.

Helpful if g is a convex function; because a local min. is also a global
min. for convex functions.

The sum of 2 convex functions is also a convex function.

5 / 19



Polynomial functions

g1(x) = a4x
4 + a3x

3 + a2x
2 + a1x + C +

b1
x

+
b2
x2

+
b3
x3

+
b4
x4

.

g2(x) = a4x
4 + a3x

3 + a2x
2 + a1x + C + b2

√
x + b3

3
√
x + b4

4
√
x .

(0 ≤ x ≤ 1) −→ (0 < w ≤ x ≤ 1).

Convexity:

Set the second derivative condition g ′′
1 (x) > 0 as a constraint (or

g ′′
2 (x) > 0, whichever you use).

- for several values of x in the (0, 1) interval.

Outcome:

For g1, obtained convex functions for small values of n, but not for
n = 150.

For g2, obtained convex functions with n = 256 (but depends on w).

6 / 19



Polynomial functions

g1(x) = a4x
4 + a3x

3 + a2x
2 + a1x + C +

b1
x

+
b2
x2

+
b3
x3

+
b4
x4

.

g2(x) = a4x
4 + a3x

3 + a2x
2 + a1x + C + b2

√
x + b3

3
√
x + b4

4
√
x .

(0 ≤ x ≤ 1) −→ (0 < w ≤ x ≤ 1).

Convexity:

Set the second derivative condition g ′′
1 (x) > 0 as a constraint (or

g ′′
2 (x) > 0, whichever you use).

- for several values of x in the (0, 1) interval.

Outcome:

For g1, obtained convex functions for small values of n, but not for
n = 150.

For g2, obtained convex functions with n = 256 (but depends on w).

6 / 19



Two stage process

Two stage process (to find integer optimal solution):

(a) Pick a value for w . Find coefficients ai , bj and C that satisfy certain
conditions in LP form.

(If it doen’t work, try a different value of w .)

(b) Use the coefficients to solve a (continuous) minimisation problem:

Minimise Z =
∑

j∈V g(xj)

xi + xj ≤ (1 + w) ∀ (i , j) ∈ E

∀ j ∈ V , 0 < w ≤ xj ≤ 1∑
j∈V xj = k + (n − k)w .

(4)

(binary search on k)

7 / 19



Two stage process

Two stage process (to find integer optimal solution):

(a) Pick a value for w . Find coefficients ai , bj and C that satisfy certain
conditions in LP form.

(If it doen’t work, try a different value of w .)

(b) Use the coefficients to solve a (continuous) minimisation problem:

Minimise Z =
∑

j∈V g(xj)

xi + xj ≤ (1 + w) ∀ (i , j) ∈ E

∀ j ∈ V , 0 < w ≤ xj ≤ 1∑
j∈V xj = k + (n − k)w .

(4)

(binary search on k)

7 / 19



Condition 1 to determine coefficients ai , bj and C

(1) Consider a bin (a vertex) i with a unit sized item (xi = 1) and
another bin with xj = w . (Total = 1 + w)

Rearranging (1 + w) into [(0.9) + (w + 0.1)] should be more expensive.

g(1) + g(w) < g(0.9) + g(w + 0.1).

g(1) + g(w) + eps ≤ g(0.9) + g(w + 0.1).

g(0.9) + g(w + 0.1)− g(1)− g(w) ≥ eps.

g(0.95) + g(w + 0.05)− g(1)− g(w) ≥ eps.

g(0.85) + g(w + 0.15)− g(1)− g(w) ≥ eps.

g(0.75) + g(w + 0.25)− g(1)− g(w) ≥ eps.

g(0.65) + g(w + 0.35)− g(1)− g(w) ≥ eps.

g(0.55) + g(w + 0.45)− g(1)− g(w) ≥ eps.

(w ≤ xi ≤ 1)

8 / 19



Condition 1 to determine coefficients ai , bj and C

(1) Consider a bin (a vertex) i with a unit sized item (xi = 1) and
another bin with xj = w . (Total = 1 + w)

Rearranging (1 + w) into [(0.9) + (w + 0.1)] should be more expensive.

g(1) + g(w) < g(0.9) + g(w + 0.1).

g(1) + g(w) + eps ≤ g(0.9) + g(w + 0.1).

g(0.9) + g(w + 0.1)− g(1)− g(w) ≥ eps.

g(0.95) + g(w + 0.05)− g(1)− g(w) ≥ eps.

g(0.85) + g(w + 0.15)− g(1)− g(w) ≥ eps.

g(0.75) + g(w + 0.25)− g(1)− g(w) ≥ eps.

g(0.65) + g(w + 0.35)− g(1)− g(w) ≥ eps.

g(0.55) + g(w + 0.45)− g(1)− g(w) ≥ eps.

(w ≤ xi ≤ 1)

8 / 19



Condition 1 to determine coefficients ai , bj and C

(1) Consider a bin (a vertex) i with a unit sized item (xi = 1) and
another bin with xj = w . (Total = 1 + w)

Rearranging (1 + w) into [(0.9) + (w + 0.1)] should be more expensive.

g(1) + g(w) < g(0.9) + g(w + 0.1).

g(1) + g(w) + eps ≤ g(0.9) + g(w + 0.1).

g(0.9) + g(w + 0.1)− g(1)− g(w) ≥ eps.

g(0.95) + g(w + 0.05)− g(1)− g(w) ≥ eps.

g(0.85) + g(w + 0.15)− g(1)− g(w) ≥ eps.

g(0.75) + g(w + 0.25)− g(1)− g(w) ≥ eps.

g(0.65) + g(w + 0.35)− g(1)− g(w) ≥ eps.

g(0.55) + g(w + 0.45)− g(1)− g(w) ≥ eps.

(w ≤ xi ≤ 1)

8 / 19



Condition 1 to determine coefficients ai , bj and C

(1) Consider a bin (a vertex) i with a unit sized item (xi = 1) and
another bin with xj = w . (Total = 1 + w)

Rearranging (1 + w) into [(0.9) + (w + 0.1)] should be more expensive.

g(1) + g(w) < g(0.9) + g(w + 0.1).

g(1) + g(w) + eps ≤ g(0.9) + g(w + 0.1).

g(0.9) + g(w + 0.1)− g(1)− g(w) ≥ eps.

g(0.95) + g(w + 0.05)− g(1)− g(w) ≥ eps.

g(0.85) + g(w + 0.15)− g(1)− g(w) ≥ eps.

g(0.75) + g(w + 0.25)− g(1)− g(w) ≥ eps.

g(0.65) + g(w + 0.35)− g(1)− g(w) ≥ eps.

g(0.55) + g(w + 0.45)− g(1)− g(w) ≥ eps.

(w ≤ xi ≤ 1)

8 / 19



Condition 1 to determine coefficients ai , bj and C

(actually we did it slightly differently)

w1 = 1 + w .

Convex combination of w1 = p(1) + q(w), p + q = 1 and p, q ≥ 0.

g(0.9w1) + g(0.1w1)− g(1)− g(w) ≥ eps.

g(0.95w1) + g(0.05w1)− g(1)− g(w) ≥ eps.

g(0.85w1) + g(0.15w1)− g(1)− g(w) ≥ eps.

g(0.8w1) + g(0.2w1)− g(1)− g(w) ≥ eps.

g(0.7w1) + g(0.3w1)− g(1)− g(w) ≥ eps.

g(0.6w1) + g(0.4w1)− g(1)− g(w) ≥ eps.

2*g(0.5w1)− g(1)− g(w) ≥ eps.

(w ≤ xi ≤ 1)

9 / 19



Condition 1 to determine coefficients ai , bj and C

(actually we did it slightly differently)

w1 = 1 + w .

Convex combination of w1 = p(1) + q(w), p + q = 1 and p, q ≥ 0.

g(0.9w1) + g(0.1w1)− g(1)− g(w) ≥ eps.

g(0.95w1) + g(0.05w1)− g(1)− g(w) ≥ eps.

g(0.85w1) + g(0.15w1)− g(1)− g(w) ≥ eps.

g(0.8w1) + g(0.2w1)− g(1)− g(w) ≥ eps.

g(0.7w1) + g(0.3w1)− g(1)− g(w) ≥ eps.

g(0.6w1) + g(0.4w1)− g(1)− g(w) ≥ eps.

2*g(0.5w1)− g(1)− g(w) ≥ eps.

(w ≤ xi ≤ 1)

9 / 19



Condition 2 to determine coefficients ai , bj and C

w ≤ item size in a bin ≤ 1.

Example: Consider one unit-sized bin and 5 w -sized bins.

Total volume = 1 + 5w .

Distribute this into 6 items (to be placed in 6 bins) of size (1 + 5w)/6
each.

6g [(1 + 5w)/6]− g(1)− 5g(w) ≥ eps.

5g [(1 + 4w)/5]− g(1)− 4g(w) ≥ eps.

4g [(1 + 3w)/4]− g(1)− 3g(w) ≥ eps.

10g [(1 + 9w)/10]− g(1)− 9g(w) ≥ eps.

20g [(1 + 19w)/20]− g(1)− 19g(w) ≥ eps.

40g [(1 + 39w)/40]− g(1)− 39g(w) ≥ eps.

10 / 19



Condition 2 to determine coefficients ai , bj and C

w ≤ item size in a bin ≤ 1.

Example: Consider one unit-sized bin and 5 w -sized bins.

Total volume = 1 + 5w .

Distribute this into 6 items (to be placed in 6 bins) of size (1 + 5w)/6
each.

6g [(1 + 5w)/6]− g(1)− 5g(w) ≥ eps.

5g [(1 + 4w)/5]− g(1)− 4g(w) ≥ eps.

4g [(1 + 3w)/4]− g(1)− 3g(w) ≥ eps.

10g [(1 + 9w)/10]− g(1)− 9g(w) ≥ eps.

20g [(1 + 19w)/20]− g(1)− 19g(w) ≥ eps.

40g [(1 + 39w)/40]− g(1)− 39g(w) ≥ eps.

10 / 19



Condition 2 to determine coefficients ai , bj and C

w ≤ item size in a bin ≤ 1.

Example: Consider one unit-sized bin and 5 w -sized bins.

Total volume = 1 + 5w .

Distribute this into 6 items (to be placed in 6 bins) of size (1 + 5w)/6
each.

6g [(1 + 5w)/6]− g(1)− 5g(w) ≥ eps.

5g [(1 + 4w)/5]− g(1)− 4g(w) ≥ eps.

4g [(1 + 3w)/4]− g(1)− 3g(w) ≥ eps.

10g [(1 + 9w)/10]− g(1)− 9g(w) ≥ eps.

20g [(1 + 19w)/20]− g(1)− 19g(w) ≥ eps.

40g [(1 + 39w)/40]− g(1)− 39g(w) ≥ eps.

10 / 19



Condition 3 to determine coefficients ai , bj and C

Desired solution:

The unit-sized items occupy k bins. Total volume = (1)(k) = k.

The w -sized items occupy the remaining (n − k) bins. Total volume =
(w)(n − k) = nw − kw .

Condition 3 example:

Break every unit-sized item into p (=5) equal pieces of size 1/p (=0.2)
each.

So now these 0.2 sized items occupy more bins (5k, not k).

The remaining volume of nw − kw should be squeezed into fewer bins,
that is, (n − 5k) bins, NOT (n − k) any more.

Fewer bins − so size in each bin will increase from w to z5 =
nw − kw

n − 5k
.

5k ∗ g(0.2) + (n − 5k) ∗ g(z5)− k ∗ g(1)− (n − k) ∗ g(w) ≥ eps.

Similarly, for various values of p, as long as w ≤ xi ≤ 1.

11 / 19



Condition 3 to determine coefficients ai , bj and C

Desired solution:

The unit-sized items occupy k bins. Total volume = (1)(k) = k.

The w -sized items occupy the remaining (n − k) bins. Total volume =
(w)(n − k) = nw − kw .

Condition 3 example:

Break every unit-sized item into p (=5) equal pieces of size 1/p (=0.2)
each.

So now these 0.2 sized items occupy more bins (5k , not k).

The remaining volume of nw − kw should be squeezed into fewer bins,
that is, (n − 5k) bins, NOT (n − k) any more.

Fewer bins − so size in each bin will increase from w to z5 =
nw − kw

n − 5k
.

5k ∗ g(0.2) + (n − 5k) ∗ g(z5)− k ∗ g(1)− (n − k) ∗ g(w) ≥ eps.

Similarly, for various values of p, as long as w ≤ xi ≤ 1.

11 / 19



Condition 3 to determine coefficients ai , bj and C

Desired solution:

The unit-sized items occupy k bins. Total volume = (1)(k) = k.

The w -sized items occupy the remaining (n − k) bins. Total volume =
(w)(n − k) = nw − kw .

Condition 3 example:

Break every unit-sized item into p (=5) equal pieces of size 1/p (=0.2)
each.

So now these 0.2 sized items occupy more bins (5k , not k).

The remaining volume of nw − kw should be squeezed into fewer bins,
that is, (n − 5k) bins, NOT (n − k) any more.

Fewer bins − so size in each bin will increase from w to z5 =
nw − kw

n − 5k
.

5k ∗ g(0.2) + (n − 5k) ∗ g(z5)− k ∗ g(1)− (n − k) ∗ g(w) ≥ eps.

Similarly, for various values of p, as long as w ≤ xi ≤ 1.

11 / 19



LP to determine coefficients

Combining all conditions, we get an LP with the coefficients a1, a2, a3,
a4, C , b1, b2, b3 and b4 as the unknowns.

For a given (n, k) combination, we experiment with different values of w
and eps – pick the (w , eps) for which we get a feasible solution to the LP.

Does this process — finding coefficients for a given (n, k) — need to run
in polynomial time?

Perhaps not; once we have the coefficients for a given (n, k), in principle,
we can re-use them for numerous instances (in step 2) for which n and k
are the same.

Software used:

Step 1 (Linear Program): GLPK first, Gurobi later.

Step 2 (Non-linear Minimisation): MINOS.

12 / 19



LP to determine coefficients

Combining all conditions, we get an LP with the coefficients a1, a2, a3,
a4, C , b1, b2, b3 and b4 as the unknowns.

For a given (n, k) combination, we experiment with different values of w
and eps – pick the (w , eps) for which we get a feasible solution to the LP.

Does this process — finding coefficients for a given (n, k) — need to run
in polynomial time?

Perhaps not; once we have the coefficients for a given (n, k), in principle,
we can re-use them for numerous instances (in step 2) for which n and k
are the same.

Software used:

Step 1 (Linear Program): GLPK first, Gurobi later.

Step 2 (Non-linear Minimisation): MINOS.

12 / 19



LP to determine coefficients

Combining all conditions, we get an LP with the coefficients a1, a2, a3,
a4, C , b1, b2, b3 and b4 as the unknowns.

For a given (n, k) combination, we experiment with different values of w
and eps – pick the (w , eps) for which we get a feasible solution to the LP.

Does this process — finding coefficients for a given (n, k) — need to run
in polynomial time?

Perhaps not; once we have the coefficients for a given (n, k), in principle,
we can re-use them for numerous instances (in step 2) for which n and k
are the same.

Software used:

Step 1 (Linear Program): GLPK first, Gurobi later.

Step 2 (Non-linear Minimisation): MINOS.

12 / 19



Step 2: Minimise a non-linear function to get an integer
solution

Desired solution value = (k)g(1) + (n − k)g(w). (known)

Minimise Z =
∑

j∈V g(xj)

xi + xj ≤ (1 + w) ∀ (i , j) ∈ E∑
j∈V xj = k + (n − k)w∑

j∈V g(xj) = (k)g(1) + (n − k)g(w)

∀ j ∈ V , 0 < w ≤ xj ≤ 1.

(5)

MINOS optimisation is sensitive to the initial solution.

We used xi = 1 (for every i) as the initial solution.

13 / 19



Step 2: Minimise a non-linear function to get an integer
solution

Desired solution value = (k)g(1) + (n − k)g(w). (known)

Minimise Z =
∑

j∈V g(xj)

xi + xj ≤ (1 + w) ∀ (i , j) ∈ E∑
j∈V xj = k + (n − k)w∑

j∈V g(xj) = (k)g(1) + (n − k)g(w)

∀ j ∈ V , 0 < w ≤ xj ≤ 1.

(5)

MINOS optimisation is sensitive to the initial solution.

We used xi = 1 (for every i) as the initial solution.

13 / 19



What if we are unable to find an integer solution for k?

During binary search, what if we are unable to find an integer
solution for k?

Can we conclude that the optimal solution value is < k?

No, unfortunately (not yet) :-(

Not necessary to obtain a (w, 1) solution.

For an edge (3, 7), x3 + x7 ≤ (1 + w).

If x3 > 0.5(1 + w), which means that x7 < 0.5(1 + w)
−→ include vertex 3 in the independent set, but not 7.

True for every neighbour of vertex 3 in the graph.

14 / 19



What if we are unable to find an integer solution for k?

During binary search, what if we are unable to find an integer
solution for k?

Can we conclude that the optimal solution value is < k?

No, unfortunately (not yet) :-(

Not necessary to obtain a (w, 1) solution.

For an edge (3, 7), x3 + x7 ≤ (1 + w).

If x3 > 0.5(1 + w), which means that x7 < 0.5(1 + w)
−→ include vertex 3 in the independent set, but not 7.

True for every neighbour of vertex 3 in the graph.

14 / 19



Instances Tested

A 25-vertex instance: Convex function in Step 1, and integer
optimal solutions in Step 2.

A 150-vertex instance with opt 29: No convex function in Step 1;

For k = 20, w = 0.008, obtained integer solution. (using function
g1)

For k = 29, obtained non-integer solution which can be easily
converted to an integer solution. (using function g2 and an initial
solution for 5/150 vertices).

A 53-vertex instance with opt 26:

For 10 ≤ k ≤ 26, we obtained integer solution with the parameters
from the 150-vertex instance (but with slightly different w = 0.19).

A 256-vertex instance with opt 30:

For (k ≤ 22): Able to re-use the parameters (AND the
corresponding function g1) from the 150-vertex instance.

(k = 30): Testing continues.

15 / 19



Instances Tested

A 25-vertex instance: Convex function in Step 1, and integer
optimal solutions in Step 2.

A 150-vertex instance with opt 29: No convex function in Step 1;

For k = 20, w = 0.008, obtained integer solution. (using function
g1)

For k = 29, obtained non-integer solution which can be easily
converted to an integer solution. (using function g2 and an initial
solution for 5/150 vertices).

A 53-vertex instance with opt 26:

For 10 ≤ k ≤ 26, we obtained integer solution with the parameters
from the 150-vertex instance (but with slightly different w = 0.19).

A 256-vertex instance with opt 30:

For (k ≤ 22): Able to re-use the parameters (AND the
corresponding function g1) from the 150-vertex instance.

(k = 30): Testing continues.

15 / 19



Instances Tested

A 25-vertex instance: Convex function in Step 1, and integer
optimal solutions in Step 2.

A 150-vertex instance with opt 29: No convex function in Step 1;

For k = 20, w = 0.008, obtained integer solution. (using function
g1)

For k = 29, obtained non-integer solution which can be easily
converted to an integer solution. (using function g2 and an initial
solution for 5/150 vertices).

A 53-vertex instance with opt 26:

For 10 ≤ k ≤ 26, we obtained integer solution with the parameters
from the 150-vertex instance (but with slightly different w = 0.19).

A 256-vertex instance with opt 30:

For (k ≤ 22): Able to re-use the parameters (AND the
corresponding function g1) from the 150-vertex instance.

(k = 30): Testing continues.

15 / 19



Instances Tested

A 25-vertex instance: Convex function in Step 1, and integer
optimal solutions in Step 2.

A 150-vertex instance with opt 29: No convex function in Step 1;

For k = 20, w = 0.008, obtained integer solution. (using function
g1)

For k = 29, obtained non-integer solution which can be easily
converted to an integer solution. (using function g2 and an initial
solution for 5/150 vertices).

A 53-vertex instance with opt 26:

For 10 ≤ k ≤ 26, we obtained integer solution with the parameters
from the 150-vertex instance (but with slightly different w = 0.19).

A 256-vertex instance with opt 30:

For (k ≤ 22): Able to re-use the parameters (AND the
corresponding function g1) from the 150-vertex instance.

(k = 30): Testing continues.

15 / 19



LP polytope: Generate functions to get integer solution?

Point A is the integer solution that we desire. If A is in the interior, then
NO matter what function g you use, there are an infinite number of
feasible solutions with g(X ) = 100! (A is NOT unique)

16 / 19



Generating functions for integer solutions - 2

But luckily, x∗i = 1 for at least one i ∈ V . (xi ≤ 1.)

Every feasible integer solution X is a vertex of the LP polytope. X =
(x1, · · · , xn) = (zeroes and ones).

So there is hope that we can design a function whose intersection with
the LP polytope is just a “small” region around X ∗.

[g(X ) = constant value]

17 / 19



3-SAT (Satisfiability) Model

Recently, we started modelling the M.I.S. as a Satisfiability problem
(3-SAT, in particular).

You can follow the results on Researchgate:

https://www.researchgate.net/publication/380034972

(the 3-SAT approach)

https://www.researchgate.net/publication/361555319

(the continuous non-linear optimisation approach)

18 / 19



Thank you for listening!

19 / 19


