

Accuracy of approximate operations on fuzzy numbers

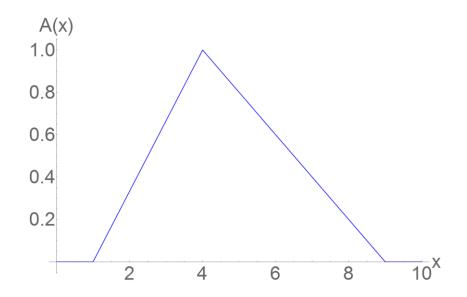
Joona Kanerva 18.1.2016

Ohjaaja: *Ph.D. Matteo Brunelli* Valvoja: *Prof. Raimo P. Hämäläinen*

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Fuzzy number

- A fuzzy set of type $A: \mathbb{R} \rightarrow [0,1]$
- Continuous membership function A(x)



Background

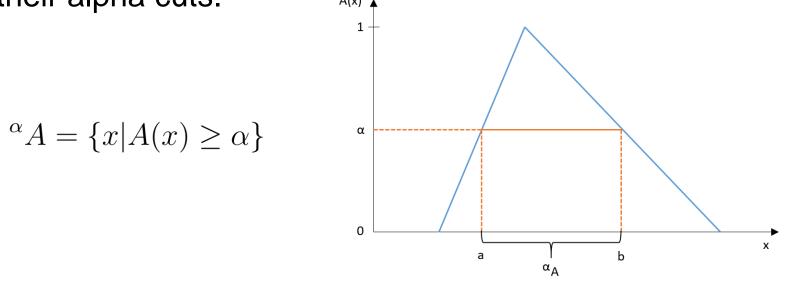
- Fuzzy multiplication does not preserve linearity.
- In literature it is often approximated to preserve linearity as to save computational power.
- Error caused by this approximation is typically assumed to be negligible.
- This may cause errors in ranking fuzzy numbers.

Objectives of the thesis

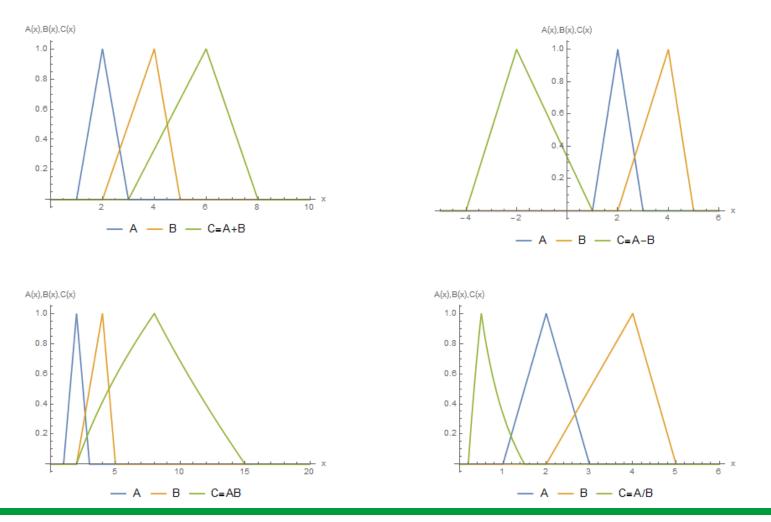
- Determine significance of the approximated preserved linearity for multiplication.
- Further analyze scenarios where error is significant.

Alpha cuts

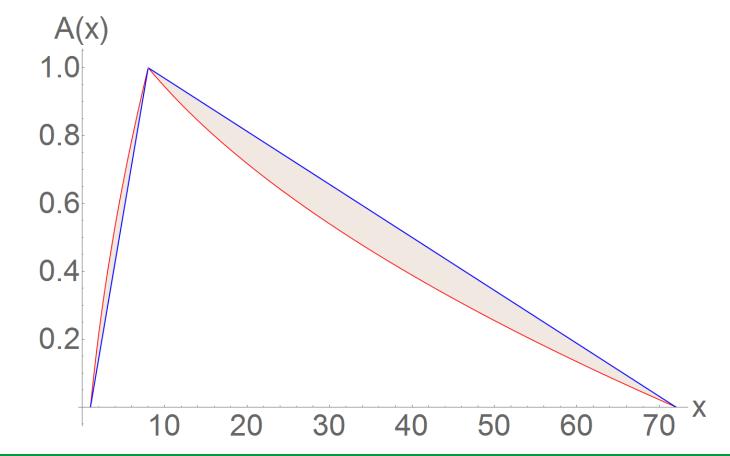
- Alpha cut is a crisp set that contains all members of the fuzzy set whose grade of membership is greater than α.
- All fuzzy sets can fully and uniquely be described by their alpha cuts.



Fuzzy arithmetic



Error in linear approximation of the product



Ranking methods

- Used to rank Fuzzy numbers
 - First type methods used here rank fuzzy numbers to the real line
- Methods used
 - Center of Gravity

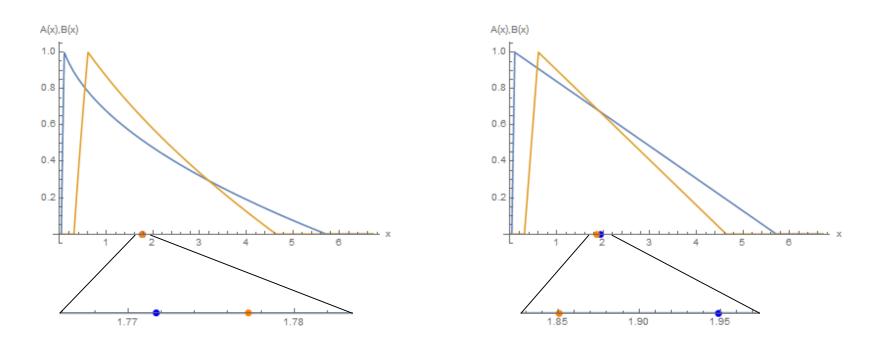
$$CoG(A) = \frac{\int_{-\infty}^{\infty} x A(x) dx}{\int_{-\infty}^{\infty} A(x) dx}$$

Possibilistic Mean

$$E_p(A) = \int_0^1 \alpha (a_\alpha^- + a_\alpha^+) d\alpha$$

Error in ranking

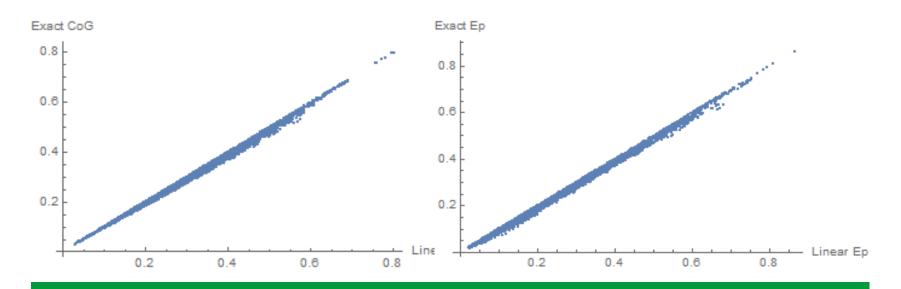
 Linearity approximation flips center of gravity ranking in this example



Numerical study

- Using Mathematica
 - Create 100 random triangular fuzzy numbers in range [0,1]
 - Execute each pairwise multiplication exactly to gain a fuzzy number
 - Rank the fuzzy number and its linear approximation using center of gravity and possibilistic mean methods
 - Compare the exact and linearity assuming rankings using Spearman's rank coefficient and Kendall's rank coefficient
 - Spearman monotonicity
 - Kendall pairwise agreement

1 st ranking method	2 nd ranking method	Spearman $ ho$	Kendall $ au$	Pairwise agreement
Exact CoG	Linear CoG	0.9986	0.9680	0.9840
Exact E _p	Linear $E_{\rm p}$	0.9985	0.9661	0.9830



Conclusions

- Pairwise agreement between exact and linearity assuming ranking over 98% for both methods
- Difference in exact ranking typically small when linearity assumption flips ranking
 - Significance of error thus small if ranking method suitably chosen
- Error builds up in consequent operations
 - Approximating preserved linearity causes significant error if applied more than once
- Using the approximation is a compromise between accuracy and computational overhead
- Results for multiplication also apply to division

