

Stochastic programming models for blood supply chain inventory management (topic presentation)

Heini Kanerva 11.06.2018

Advisor: *Ellie Dillon* Supervisor: *Fabricio Oliveira*

Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla verkkosivuilla. Muilta osin kaikki oikeudet pidätetään.

Background (1/3)

• The blood supply chain (BSC) consists of four stages

- Inventory management is needed to
 - Minimize operating costs
 - Minimize shortage and outdate
- The focus is on hospital red blood cell (RBC) inventories
 - Determining optimal RBC ordering policies
 - Costs from ordering, storage, shortage, and outdate

Background (2/3)

- Challenges in BSC inventory management:
 - Uncertain demand
 - Perishable nature of the product
 - Bias towards objectives other than cost-minimization
- The work is based on two two-stage stochastic programming models
 - Decisions grouped into first-stage and second-stage decisions
 - Stochastic nature represented by a set of possible scenarios considered simultaneously

Background (3/3)

- The first model aims to determine an optimal (R, S) inventory control policy
 - R = review periodicity, S = inventory target level
 - Set planning horizon
 - Considers several blood types and the possibility of substitution
- The second model considers transshipment
 - Aims to obtain optimal order and transshipment quantities
 - Review periodicity set to one day
 - Rolling horizon
 - Controls age of blood units
 - Single blood type

Objectives

- Compare the two models in terms of how well they represent the problem
- Compare the computational performance of the models
- Explore possibility of combining best aspects of the two models
 - Add tracking of blood unit age into first model
 - Add possibility of substitution into second model
 - Age differentiation

Methods

- Studying the papers on the two models
- Studying other relevant literature
- Implementation, use and editing of the models in Julia
- Structured comparison of features
 - Defining key performance indicators
 - Modeling capabilities
 - Computational performance

- Dillon, M., Oliveira, F. and Abbasi, B. (2017). A two-stage stochastic programming model for inventory management in the blood supply chain. *International Journal of Production Economics*, 187, pp.27-41.
- Dehghani, M., Abbasi, B. and Oliveira, F. (2018). Proactive transshipment in the blood supply chain: a stochastic programming approach. To be published in *European Journal of Operational Research* [Preprint].
- Other relevant literature on stochastic programming and blood supply chain inventory management

Schedule

Start	1/6/2018
Topic presentation	11/6/2018
Literature review and implementation of the models	6-7/2018
Analysis of the models	6-8/2018
Presenting the results	Fall 2018
Writing the report	6-8/2018

