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A methodology for monitoring system performance

SRINIVAS TALLURIy* and JOSEPH SARKISz

Monitoring and improving manufacturing processes involves identifying, investi-
gating and eliminating problems responsible for ine� ciencies in production
operations. While statistical process control tools, such as control charts, are
available for process monitoring at the operational level, methods for evaluating
system performance from more strategic and tactical levels are limited. The tradi-
tional control charts that monitor a single process parameter at a time may not be
appropriate in situations where interrelationships among various system measures
exist. Although multivariate process control techniques allow for simultaneous
monitoring of several process parameters, they require assumptions of indepen-
dence and multivariate normality of data. In addition, their application has
mostly been at an operational level. In order to assist managers in monitoring
and improving manufacturing system performance, this paper proposes an indi-
vidual control chart that monitors an integrated performance index generated
from a non-parametric method, which e� ectively considers multiple performance
measures and the relationships between them. The primary advantages of this
method are that a single integrated measure can be monitored, does not require
assumptions of independence and multivariate normality of data, and allows for
the integration of decision-maker’s input when the system measures that are
monitored have unequal importance.

1. Introduction
Performance monitoring and improvement of manufacturing systems have

received signi®cant interest in academia and industry. While practitioners are imple-
menting methods to improve manufacturing operations in order to respond quickly
and e� ectively to customer needs, researchers are emphasizing the development of
new and more e� ective methods that can be applied to industry problems. The
primary goals of manufacturing system monitoring are to identify, investigate and
eliminate problems that are responsible for ine� ciencies in the production opera-
tions.

A manufacturing system can be de®ned as an activity that transforms inputs to
outputs. In production operations, resources such as raw materials, capital, labour
and machines are considered as inputs. Outputs are the actual number of products
produced and/or system performance measures, such as throughput rates (number of
units produced per unit of time), work-in-process levels (inventory levels generated),
and defective rates.
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Managing any business operation, manufacturing or otherwise, requires per-
formance measures. This has become a truism in managing operations ever since
the total quality revolution of the past few decades, where `you can’t manage what
you can’t measure’ has become a battle cry of most quality gurus. The evaluation
and use of multiple performance measures has also been promoted by most of the
performance measurement literature from such areas as operations, engineering, and
cost accounting (e.g. Kaplan and Norton 1996, Nanni et al. 1992, Adams et al.
1995). These measures also need to have various characteristics, including strategic
and operational dimensions, for consideration. Yet, when a number of performance
measures are to be evaluated simultaneously, managers may not be able to discern
easily when a particular process is performing well or not.

This paper proposes a methodology for e� ectively monitoring manufacturing
system performance in the presence of multiple input and output performance meas-
ures. The motivation for this research stems from the fact that few methods that
integrate management preferences with performance data currently exist for evalu-
ating and monitoring system performance from a strategic/tactical standpoint. While
existing methods, such as control charts, can e� ectively be utilized for monitoring
individual and multiple process parameters, their application is primarily at an
operational and disaggregate level. In addition, the traditional control charts limit
themselves to monitoring a single process parameter and multivariate charts, which
allow for simultaneous monitoring of several process parameters, require assump-
tions of independence and multivariate normality of data. These issues are further
ampli®ed in evaluating system performance where several parameters and relation-
ships among them exist. Also, from a strategic/tactical standpoint, some system
parameters may be more important than others and depend on the competitive
priorities and goals set by companies. Thus, it is critical to develop a methodology
that e� ectively addresses these issues and provides management with a tool for
system performance monitoring and improvement.

2. Literature review
A number of reviews on the practice, requirements design and development of

performance measurement systems exist (e.g. Adams et al. 1995, Lockamy and Cox
1994, Neely et al. 1995). Kueng (2000) points out two important characteristics for
performance measures that we seek to address here.

. Performance is multidimensional. As performance has many contributing fac-
tors, it cannot be gathered and assessed by a single indicator.

. Performance indicators are not independent. Most performance indicators
stand in a relationship with one another. For the most part, the type of rela-
tionship is either con¯icting or complementary; independence is the exception
rather than the rule.

Several techniques have been proposed in the literature for process improvement
and control at various levels of decision making and management. At the strategic
level of analysis, performance measures range from standard ®nancial measures,
such as return on assets or investment (ROA and ROI), to stock market returns.
One of the most popular evaluation techniques at the strategic level of performance
is Kaplan and Norton’s (1996) Balanced Scorecard approach. This approach is a
strategic management instrument that supplements traditional ®nancial measures
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with three additional perspectives: the customer, the internal business process, and
the learning and growth perspective. It is meant to be a tool for describing an
organization’s overall performance across a number of measures on a regular
basis and is focused on corporations or organizational units, such as strategic busi-
ness units, but not on business processes. It involves business processes only as far as
their impact on customer satisfaction and in achieving an organization’s ®nancial
objectives.

Some of the tactical level performance evaluation methods that consider multiple
dimensions from a quantitative modelling focus include Bititci et al. (2001),
Ghalayini, et al. (1997), Sabri and Beamon (2000), Sarkis and Talluri (1996), and
Suwigno et al. (2000). Yet these techniques do not simultaneously consider a multi-
factor, multi-period environment from a continuous process monitoring standpoint
and fail to address issues relating to managerial preferences in system performance
evaluation. In addition, these methods do not provide for a mechanism that alerts
managers to when the system performance falls below certain standards. The
approach proposed in this paper e� ectively addresses these issues.

At the operational level, some of the important performance evaluation tools are
Pareto charts, process charts, cause-and-e � ect diagrams and control charts.
Although Pareto charts and cause-and-e � ect diagrams are useful for investigating
and eliminating defects, these methods do not allow for continuous process mon-
itoring. While control charts can e� ectively be utilized at an operational level, their
applicability for system performance monitoring is limited due to the issues
addressed in the previous section. Since the methodology utilized in our paper
draws from some of the concepts in multivariate process monitoring, we provide a
review of these techniques and relate them to our research.

Since research in the area of multivariate process control is fairly broad, we only
address some of the relevant work. For detailed reviews on multivariate process
control techniques, see Alt (1984) , Jackson (1985), Lowry and Montgomery (1995)
and Wierda (1994) . Hotelling T2-charts, Multivariate Shewhart charts, MCUSUM
(Multivariate Cumulative Sum) charts, and MEWMA (Multivariate Exponentially
Weighted Moving Average) charts are some of the widely known techniques.

The applicability of multivariate statistical techniques to monitoring system per-
formance is primarily limited due to the assumptions of independence and multi-
variate normality of data. Since production system parameters and product
characteristics are usually correlated, it may be di� cult to satisfy these assumptions.
Jackson (1985) proposes a method that involves transforming the original process
parameters into principle components and using these orthogonal variables to
develop control charts. Although this method achieves independence, it may result
in loss of information about the original variables, and also poses di� culty in inter-
preting the principle components. In the presence of highly correlated parameters
one can individually monitor all of them separately (Woodal and Ncube, 1985).
However, this method can be quite cumbersome since it may require tracking of
many variables separately.

MCUSUM and MEWMA charts are multivariate versions of univariate
CUSUM and EWMA charts. They basically utilize weighted sequences of prior
observations. The decision-maker provides the ¶ value, which is the weighting con-
stant. The MEWMA charts weigh past observations in the same manner for all the
quality characteristics. In situations where the monitored variables are of unequal
importance, the regression-adjusted method proposed by Hawkins (1991) can be
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utilized. However, this method requires all the regression-based statistical and data
characteristic assumptions.

This paper considers the above-mentioned characteristics of traditional multi-
variate statistical techniques and develops a methodology for e� ectively monitoring
system performance. It overcomes limitations such as independence, multivariate
normality of data, and unequal importance of variables as discussed below. The
proposed methodology allows for consideration of variables that are correlated
(process inputs and outputs). It simultaneously considers inputs and outputs in
deriving a measure for the system e� ciency, which is based on a non-parametric
method referred to as Data Envelopment Analysis (DEA). Thus, we do not need
assumptions of multivariate normality of data. It allows for incorporation of deci-
sion-maker preferences when the variables that are measured have unequal manage-
rial importance. This is achieved through the utilization of the Analytical Network
Process (ANP) for obtaining relative importance weights for variables that are meas-
ured. These weights are integrated into the DEA evaluations in obtaining the system
e� ciency. The system e� ciency scores evaluated over time are monitored using an
individual control chart.

3. Methods
This section provides a brief introduction to the methods used in this paper: the

ANP, DEA and individual control charts. For more details on these methods, please
see the indicated references.

3.1. The Analytical Network Process
The ®rst step in our methodology is to determine the managerial `importance’

levels or `preferences’ for the performance criteria that will be used to evaluate the
e� ciency of the manufacturing process. The proposed method to integrate manage-
rial preferences into the development of the control chart is the Analytical Network
Process (ANP), a multi-attribute decision making model (Saaty 1996). The relative
importance weights of the various decision-makers elicited from ANP can be used to
determine the bounds of the weights for the factors. The bounds can be determined
by using the highest and lowest weightings from each decision-maker for each factor,
or could be based on the standard deviation of the factors from the decision-maker
weights. In this paper, we will simply use the highest and lowest weights for each
factor as bounds. For additional insights into the application of the ANP method,
see Azhar and Leung (1993), Hamalainen and Seppalainen (1986), Meade et al.
(1997), Saaty (1996), Saaty and Takizawa (1986) and Sarkis (1998).

3.2. Data Envelopment Analysis
Productivity models have traditionally been used to evaluate e� ciencies of

systems. Data Envelopment Analysis (DEA) models measure the e� ciencies of a
set of homogenous systems or decision making units (DMUs) by incorporating
multiple input and output factors. The e� ciency is de®ned as the ratio of weighted
outputs to weighted inputs.

Several DEA models exist in the literature for analysing various problem envir-
onments. Many of these models are extensions of the basic ratio DEA model pro-
posed by Charnes et al. (1978), which is also referred to as the CCR (Charnes,
Cooper and Rhodes) model. In this paper, we use one such extension proposed by
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Andersen and Petersen (1993), which allows for e� ective ranking of DMUs. Their
model is shown as formulation (1) below:

max
Xs

rˆ1

vryrp

s:t:
Xm

iˆ1

uixip ˆ 1

Xs

rˆ1

vryrj ¡
Xm

iˆ1

uixij µ 0 8j 6ˆ p

vr; ui ¶ 0;

…1†

where
xij is the observed value of input i for DMU j,
yrj is the observed value of output r for DMU j,

xip; yrp are the inputs and outputs of DMU `p’ whose e� ciency is under evalua-
tion,

vr is the weight attached to output r,
ui is the weight attached to input i,
s is the represents the number of outputs,

m is the represents the number of inputs.

Formulation (1), which we refer to as the `ranking’ CCR (RCCR) model, allows
for e� ciency scores to be greater than 1, thus providing for an e� ective ranking of
DMUs, which is one of the limitations of the CCR model. The above model is run n
times in evaluating the e� ciency scores of all the units, where n represents the
number of DMUs.

3.2.1. Integrating managerial preferences into the RCCR model
Constraining the range of input and output weights (u and v) provides a method

for integrating managerial preferences into the RCCR model. The use of assurance
regions (AR) for restriction of weights is one approach that allows for the incorpora-
tion of decision-maker’s preferences into DEA evaluations. Thompson et al. (1990)
describe the concept and derivation of ARs. The process of setting AR begins by
de®ning upper and lower bounds (UB and LB) for each input and output weight.
The bounds for each factor weight allow for de®ning constraints that re¯ect the
relative preferences of various factors. These LB and UB values may be represented
as ranges of preference weights for each of the factors as de®ned by the decision-
makers. The AR constraints relate the weights and their bounds to each other. The
generalized AR constraint sets that are derived from LB and UB data are:

vi ¶ LBi

UBj

vj and vi µ UBi

LBj

vj: …2†

These constraints can be added to formulation (1) to form the RCCR with
assurance regions (RCCR/AR) model. The critical process variables (performance
criteria) form the set of inputs and outputs for the RCCR/AR model. The lower and
upper bounds of the input and output weights (critical process variable weights) are
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determined by evaluating the relative importance weights from the ANP process.
This is detailed further in the illustrative application.

3.3. Individual control charts
The DEA and ANP models are utilized to evaluate the performance of the process

over time. In order to track and monitor the performance, a control chart and appro-
priate calculations for a sample size of 1 are required. This is because DEA provides a
single e� ciency score for each time period that represents the process performance.

When the sample size for process control is n ˆ 1, an individual control chart,
referred to as the x-chart, can be utilized for process monitoring. For more informa-
tion on the applicability of these charts, refer to Evans and Lindsay (1999). The
Upper Control Limit (UCL) and the Lower Control Limit (LCL) for an x-chart are:

UCLx ˆ ·xx ‡ 3 ·RR

d2

…3†

LCLx ˆ ·xx ¡ 3 ·RR

d2

…4†

where: ·xx is the sample mean; ·RR is the mean sample range; d2 is the table value
obtained from standard quality control tables.

Since there is not enough information to derive a measure for variability from a
sample size of 1, a moving average of ranges of n successive observations is recom-
mended. For example, a moving range for n ˆ 2 is calculated by ®nding the absolute
di� erence between two successive observations. The number of observations utilized
in the moving range determines the value of d2, which is obtained from standard
quality control tables. The control limits for the moving range chart are de®ned by:

UCLx ˆ D4
·RR …5†

LCLx ˆ D3
·RR …6†

where: D values are obtained from standard quality control tables; ·RR is the mean
sample range.

4. Monitoring system performance
Our methodology involves the application of a series of models. Initially, the

critical process variables and the relative importance levels are identi®ed through the
ANP process. Simulated process data are generated for the example, and process
e� ciency is evaluated by utilizing the RCCR/AR model with AR restrictions iden-
ti®ed from the ANP method. The individual control charts are then generated and
the process performance is monitored.

4.1. ANP process for performance criteria evaluation
The use of the ANP process requires the development of a decision network

hierarchy. The network hierarchy determines the importance (and thus bounds)
on the various performance criteria. It also allows these criteria to be linked to the
`strategic’ direction of the organization. To keep the weighting model simple, we only
investigate the e� ects of the following example performance criteria: Operating
Costs, Average Work-in-Process (WIP), Average Flow-Time (FT), and Yield Rate
(shown in ®gure 1). Each of these performance criteria is controlled by the objective
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of the ANP model, which is to garner managerial preference weights. The `feedback’
portions of the decision hierarchy include the strength of the relationships among the
measures, represented by the arcs connecting the performance measures. The other
feedback elements are the relationships of the measures with respect to short-term
and long-term planning horizons. For example, the question for the ®rst direction
would be `In the short-term, what is the relative importance of criterion `x’ when
compared with criterion `y’.’ The opposite relationship would determine the relative
importance of the measure from a short-term versus long-term perspective. This
question may be worded, `How much more important is criterion `x’ in the short-
term versus the long-term.’

The above pairwise comparison questions are part of the ®rst step in the ANP
process. This step is similar to calculating relative preference weights among factors
using the traditional Analytical Hierarchy Process (AHP). That is, a pairwise com-
parison matrix is developed where the relative importance of each of the factors,
when evaluated with respect to the `controlling’ factor, is determined. Table 1 shows
the pairwise comparison matrix for the performance measures when evaluating their
relative importance weights with respect to the objective (the controlling factor).

4.2. Determining relative importance weights
Saaty (1980) recommends a scale of 1 to 9 (and 1 to 1/9) when completing

pairwise comparisons among performance criteria or process factors. Once the pair-
wise comparisons are completed they form a pairwise comparison matrix (A). Then a
local priority vector w (the vector of relative importance weights for the performance
criteria, which is de®ned as the e-vector in the example ®gures) is computed as the
unique solution to:

Aw ˆ ¶maxw; …7†
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OBJ Cost WIP FT Yield E-vector

Cost 1 3 2 4 0.462
WIP 0.333 1 0.5 2 0.156
Flow 0.5 2 1 4 0.294
Yield 0.25 0.5 0.25 1 0.088

Table 1. Pairwise comparison matrix and relative importance
weight results for performance measures and impact on
objective.
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Figure 1. Network decision hierarchy for managerial weights elicitation using ANP.



where ¶max is the largest eigenvalue of A. These calculations were completed using

the AUTOMAN software for AHP analysis of advanced manufacturing technology

(Weber 1993).

The results of this pairwise comparison matrix show that cost is viewed, by this
decision-maker, to be the most important operational performance criterion (0.462),

while yield is perceived as least important for the strategic goals of the organization.

The relative importance weights of this matrix (e-vector) are then introduced into the

supermatrix (table 2). The e-vector for the strategic clusters shows the relative im-

portance of weights on the objectives of the organization (from table 1, with values

equal to 0.462, 0.156, 0.294 and 0.088, respectively) as shown in bold in table 2. To

complete the supermatrix, a total of 11 pairwise comparison matrices need to be
completed. One for the performance measures±objective relationship, four for the

performance measure interdependencies, and six for the interdependencies between

the planning horizon and strategic clusters.

As we can see in the supermatrix in table 2, this decision-maker views FT and

Yield to be relatively more important than Cost and WIP in the short-term planning

horizon. The opposite seems to be true for the long-term planning horizon. In

addition, a similar pattern exists in terms of where to put relative emphasis for
each of the factors.

The next step in the ANP process is to determine the ®nal set of relative import-

ance weights for the performance measures from the supermatrix. This ®nal set is

determined by raising the supermatrix to a su� ciently large power (multiplying it by

itself) such that the ®nal weights remain stable (do not change with each additional

multiplication, or converge). However, to ensure that convergence does occur, the

supermatrix needs to be `column stochastic’. One way of ensuring column stochas-
ticity is to normalize the values in the columns so as to sum to 1. A column normal-

ization is completed in this example by dividing each value in the column by the sum

of the column values.

In this example the convergence to at least the fourth decimal place (10¡4) (the

weights remained constant when they were rounded o� to that fourth decimal place)

occurred when the matrix was raised to the 32nd power. The results of the converged

supermatrix are shown in table 3.
The weights from other managerial decision-makers need to be acquired in a

similar fashion. In this illustration, we assume the maximum and minimum values

for each factor from among all the decision-makers. These values are to be used as

upper and lower bounds in the next phase of the methodology. The results of the

bounds for the four performance measures are shown in table 4.
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OBJ ST LT Cost WIP FT Yield

Objective 0 0 0 0 0 0 0
Short Term 0 0 0 0.4 0.35 0.7 0.6
Long Term 0 0 0 0.6 0.65 0.3 0.4
Cost 0.462 0.109 0.371 0 0.25 0.25 0.4
WIP 0.156 0.109 0.41 0.35 0 0.35 0.4
FT 0.294 0.433 0.126 0.35 0.3 0 0.2
Yield 0.088 0.349 0.093 0.3 0.45 0.4 0

Table 2. Initial supermatrix for network hierarchy.



4.3. System e� ciency evaluation
In this step, we evaluate the relative performance of the process over time using

the RCCR/AR approach with the factor weight restrictions derived from the ANP
technique.

We select a total of one input (Operating Cost) and three outputs (Average WIP,
Average FT, and Yield). A characteristic of inputs is that smaller values indicate
better performance, which is true with operating cost. For outputs, larger values
represent better performance. While this is true with the Yield measure, Average
WIP and Average FT need to be transformed to maintain the `large is better’ char-
acteristic of outputs. Considering the reciprocal of these two measures performs this
transformation.

The data utilized in the illustrative example are shown in table 5. These data are
randomly generated from prede®ned uniform distributions using an Excel spread-
sheet. We utilized the RANDBETWEEN function in Excel with distributions of
(1 000 000, 2 000 000), (100 000, 150 000), (0.5, 2.0), and (0.900, 0.995) for
Operating Costs, Average WIP, Average FT, and Yield, respectively. The data set
was then mean normalized (with reciprocals of the Average FT and WIP taken) to
eliminate any scale e� ects of the weight restrictions. In order to illustrate the e� ec-
tiveness of our technique we have rearranged the sequence of some of the randomly
generated data points to obtain an out-of-control pattern as demonstrated later.

The RCCR/AR model is then executed. The factor weight bounds for this deci-
sion environment are chosen from the ANP analysis described in the previous sec-
tion. The results of this execution are shown in table 6.

4.4. Process monitoring with individual control charts
Initially, we generated the control limits for the moving range chart. The moving

range values are calculated by using a two-period moving window. The results are
summarized in table 6. The ·RR value for this illustrative example is 0.155. The upper
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OBJ ST LT Cost WIP FT Yield

Objective 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Short Term 0.171 0.171 0.171 0.171 0.171 0.171 0.171
Long Term 0.163 0.163 0.163 0.163 0.163 0.163 0.163
Cost 0.156 0.156 0.156 0.156 0.156 0.156 0.156
WIP 0.175 0.175 0.175 0.175 0.175 0.175 0.175
FT 0.165 0.165 0.165 0.165 0.165 0.165 0.165
Yield 0.171 0.171 0.171 0.171 0.171 0.171 0.171

Table 3. Converged supermatrix for network hierarchy.

Factor Lower bound Upper bound

Cost 0.156 0.220
WIP 0.096 0.187
FT 0.092 0.210
Yield 0.078 0.171

Table 4. Upper and lower bounds of relative
importance weights for performance measures.



and lower control limits for the moving range chart are 0.51 and 0.00, respectively (a

D4 value of 3.268 is selected). Based on these limits, one can conclude that the

variability of the process is in control since all the observations are within the

limits. Since the moving range chart appeared to be in control, we then develop an

x-chart.

The x-chart depicted in ®gure 2 is developed using 1, 2 and 3 sigma limits. The ·xx
value for the data set is 0.690. The upper and lower control limits for 1, 2 and 3

sigma standard errors are (0.83, 0.55), (0.97, 0.42) and (1.10, 0.28), respectively (the

d2 value utilized is 1.128). This chart is di� erent from the traditional charts in that we

consider the process to be out-of-control if a point falls below the lower 3-sigma

limit. This approach is used because the index measured is a representation of the

system e� ciency and higher values indicate better performance. The periods in which
the system performance index achieves a relatively high value can be utilized as

possible benchmarks for process improvement.

It is evident from ®gure 2 that the process seems to be under control for this

illustrative example. The process appears to have performed the best in periods 2 and

25 with scores of 1.055 and 1.042, respectively. These two periods can be utilized as

possible benchmarks for improving the process performance in future time periods.
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Operating Costs Average WIP (units) Average ¯ow-time Yield
Sample ($) (units) (days) (%)

1 1364136 146853 1.57 0.982
2 1084794 123457 0.79 0.929
3 1972820 135029 0.81 0.903
4 1276697 126703 1.66 0.902
5 1656406 106452 1.00 0.968
6 1771203 126658 1.14 0.902
7 1196143 117088 1.59 0.924
8 1527999 130252 1.94 0.943
9 1684917 116697 1.84 0.956

10 1780074 144918 1.10 0.929
11 1315763 100807 1.75 0.973
12 1322362 134988 1.05 0.969
13 1124592 129700 1.03 0.968
14 1830507 145622 0.54 0.950
15 1624079 118980 1.52 0.907
16 1292410 109948 1.76 0.921
17 1965139 110104 1.77 0.914
18 1845709 139365 1.60 0.941
19 1924141 118859 1.86 0.945
20 1204509 121861 1.40 0.972
21 1693734 106682 1.47 0.969
22 1370221 139111 1.15 0.965
23 1149480 119458 1.28 0.959
24 1250170 109066 1.08 0.909
25 1128570 149699 0.67 0.966
26 1895706 100011 0.67 0.901
27 1937166 115911 1.20 0.995
28 1118864 119152 1.30 0.924
29 1570244 147984 1.32 0.956
30 1579692 107447 1.63 0.975

Table 5. Process data for illustrative example.



Management must identify the policies and procedures utilized in these periods and

seek to implement them.

In deriving the 1, 2 and 3 sigma zones, one can utilize stricter conditions to

evaluate the system performance. It seems that the process has performed poorly

in periods 15, 16, 17, 18 and 19 with scores of 0.582, 0.526, 0.489, 0.482 and 0.484,

respectively. Under zone evaluation this does imply that the process is out-of-control
because four out of ®ve consecutive points fell beyond one standard error.

Management should investigate this problem by utilizing separate charts for the

four performance variables as shown in ®gures 3±6.

Initially, the moving range charts for the four variables Operating Cost, Average

WIP, Average FT and Yield are investigated. Based on these charts, the variability

of all four measures is observed to be in control. The x-charts are then generated for

the four variables, which are shown in ®gures 3±6. In all cases, in general, the process
seems to be in control with all points falling within 3-sigma limits.

In order to investigate further the case of system performance in periods 15, 16,

17, 18 and 19, where four out of ®ve consecutive points fell beyond the 1-sigma

limits, as indicated in ®gure 2, we developed the 1-sigma limits for the separate

charts. The results of this analysis are interesting. Although, for the ®ve periods in
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Sample Relative e� ciency Moving range

1 0.652 Ð
2 1.055 0.403
3 0.746 0.309
4 0.708 0.038
5 0.664 0.044
6 0.548 0.116
7 0.796 0.248
8 0.582 0.214
9 0.562 0.020

10 0.529 0.033
11 0.781 0.252
12 0.748 0.033
13 0.897 0.149
14 0.726 0.171
15 0.582 0.144
16 0.526 0.056
17 0.489 0.037
18 0.482 0.007
19 0.484 0.002
20 0.809 0.325
21 0.605 0.204
22 0.699 0.094
23 0.865 0.166
24 0.840 0.025
25 1.042 0.202
26 0.669 0.373
27 0.534 0.135
28 0.875 0.341
29 0.576 0.299
30 0.638 0.062

Table 6. Process e� ciency ratings.



question, we failed to see a speci®c out-of-control pattern in separate charts, the x-
chart for Average FT came closest to being out-of-control . It is evident from this
chart that for periods 15 to 19, three of ®ve consecutive points fell beyond 1-sigma
limits. In addition, note that period 18 had an Average FT value of 1.6, which is very
close to the 1-sigma upper limit of 1.63. Since smaller values of Average FT indicate
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Figure 2. x-chart for system performance.
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better performance, it can be concluded that the process was not very e� cient during

these time periods. This result, coupled with the fact that relatively low yield rates
and high operating costs occurred during these time periods, made the integrated
system performance index be out-of-control . This result highlights the fact that while
separate charts are marginally in control the overall process can be out-of-control .

Management needs to investigate the causes for relatively high Average FT, low
Yield Rates, and high Operating Costs for these periods in question.

It is also possible for the system e� ciency to be in control and for some indi-
vidual factors to be out-of-control . This could happen if the decision-maker places

less emphasis (weight) on a particular factor(s), which happens to be out-of-control
in the individual chart, but this does not a� ect the e� ciency score much because of
its relatively lesser weight in the DEA model.

1579Methodology for monitoring system performance

80000

85000

90000

95000

100000

105000

110000

115000

120000

125000

130000

135000

140000

145000

150000

155000

S1 S3 S5 S7 S9 S11 S13 S15 S17 S19 S21 S23 S25 S27 S29

Sample

A
ve

ra
g

e 
W

IP
1 Sigma

1 Sigma

x Bar

Figure 4. x-chart for Average WIP.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1

S1 S3 S5 S7 S9 S11 S13 S15 S17 S19 S21 S23 S25 S27 S29

Sample

F
lo

w
 T

im
e

1 Sigma

1 Sigma

x Bar

Figure 5. x-chart for Average FT.



All the patterns in control chartsÐsuch as the point outside the control limits, a
sudden shift in the process performance average, cycles, trends, instabilityÐcan be
detected using this method. Once the particular pattern is observed then a more
detailed analysis using separate charts can be used for each of the performance
measures under investigation.

From an ongoing evaluation standpoint, we suggest dropping the period (DMU)
with the lowest e� ciency score as a new period enters into the model. This ensures
that each new period is evaluated or challenged against the best of the pervious
periods. This would in fact mean that the UCL and LCL limits of the individual
control chart would be evaluated on better performing benchmarks from period to
period, which is consistent with the concept of continuous process improvement.
While the AR values that represent the relative importance of various factors remain
the same, the RCCR values have to be recalculated with the new DMU. However,
the recalculations would not be very cumbersome since the approach can easily be
automated using computer software.

5. Conclusions and extensions
In this paper, we propose a methodology for developing a control chart for

manufacturing system monitoring. We have utilized a combination of ANP, a
DEA model with added ranking ability, and individual charts for performance
evaluation and process monitoring. We have demonstrated our methodology
through a numerical example.

In summary, the primary advantages of this method are: (1) it e� ectively moni-
tors the system performance in the presence of multiple measures, and does so by
tracking a single integrated index; (2) it e� ectively integrates decision-makers’ pre-
ferences into the process; (3) it overcomes some of the limiting assumptions of
traditional methods such as multivariate normality and independence.

Although we did address some preliminary ways of using this as a benchmarking
tool, more work is required in this area as to the identi®cation of appropriate bench-
mark periods for process improvement. In addition, the sensitivity analysis of this
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process needs to be investigated to determine the parameter shifts associated with the
selection of decision factors, decision-makers’ perceptual and managerial variabil-
ities, and alternative approaches for evaluating ranges and control limits. Integration
of qualitative performance measures can also be investigated. This is possible since
there are a number of techniques that can be used to quantify qualitative measures
and integrate them into a DEA-type analysis. Its utility with respect to actual man-
agerial understanding and eventual acceptance also needs to be investigated further.
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