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M itigating supply chain risk is a critical component of a company’s overall risk management strategy. Drawing upon Contingency Theory,
we posit that the appropriateness and effectiveness of risk mitigation strategies are contingent on the internal and external environments

and that there is no one-size-fits-all strategy. While literature on risk management has proposed a variety of tools and techniques for effectively
evaluating and managing supply chain risks, comprehensive assessment of the efficiencies of alternative risk mitigation strategies has not been
addressed in the literature. Such an assessment will help managers select the appropriate mitigation strategy for a given decision-making envi-
ronment. To this end, this study is first of its kind in evaluating and proposing efficient supply chain risk mitigation strategies in the presence
of a variety of risk categories, risk sources, and supply chain configurations. We combine an empirically grounded simulation methodology with
data envelopment analysis and nonparametric statistical methods to analyze and rank alternative mitigation strategies. We find that the more effi-
cient strategies focus on flexibility rather than on redundancy for supply chain failures. Our research presents several interesting and useful man-
agerial insights for deciding what strategies are most capable of mitigating risks in a variety of contexts.
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INTRODUCTION

Recent years have witnessed many disasters that have created
numerous problems for the supply chains of global companies
(Sodhi and Tang 2012), and these disasters and their aftermath
have brought increased attention to the role of risk management
in supply chains (Narasimhan and Talluri 2009). New informa-
tion technologies make it possible to extend supply chains to
global markets (Sahin and Robinson 2002). This increases the
dependence on outside resources and makes firms vulnerable to
failures affecting all partners within the supply chain (Craighead
et al. 2007). Uncertainties in factors such as market conditions,
supply availability, and transportation can interrupt operations,
thereby causing adverse effects for the companies involved (Hen-
dricks and Singhal 2003).

Traditional supply chain designs normally focus on cost effi-
ciency, assuming that the elements in the supply chain will per-
form as expected (see Karabati and Kouvelis 2008). Sheffi
(2005) provides examples of severe problems that illustrate the
inability of traditionally designed supply chains to deal with
unanticipated events. In denying the assumption that supply
chain elements will perform flawlessly, the assessment and selec-
tion of risk mitigation strategies then become a crucial element
in the process of risk management. Unexpected losses arise from
a sequence of failures and/or causal events (Lewis 2003). Orga-
nizations must determine the potential for such a sequence by
understanding the conditions that give rise to such problems,
and, subsequently, they must assess the likelihood of problems
occurring and any negative impact the problems may entail
(Young and Tippins 2001).

Firms use a number of strategies to manage supply chain risks
(Hillman 2006). Mitigation strategies are those in which the firm
takes some action in advance; therefore, the firm incurs the cost
of the mitigating action whether or not an unanticipated event or
outcome occurs (Kleindorfer and Saad 2005). Because a firm is
liable for costs regardless of the situation’s end results, the effec-
tiveness of a strategy must be judged with respect to its cost and
noncost factors. In this article, we consider the seven risk miti-
gation solutions described in Chopra and Sodhi (2004), which
can be classified into either redundancy or flexibility approaches.
These approaches are the two main risk mitigation strategies that
are identified in the literature and utilized in practice (see Rice
and Caniato 2003; Rice and Sheffi 2005; Tomlin 2006; Tang
and Tomlin 2008; Park 2011). Multiple potential sources for
risks produce varying effects on a supply chain and complicate
the selection of a risk mitigation strategy. We base our theoreti-
cal framework on Contingency Theory (CT) because the appro-
priateness and effectiveness of a risk mitigation strategy are
contingent on each organization’s internal and external environ-
mental characteristics—there is no one-size-fits-all strategy.
We seek to provide guidance to academics and managers on
evaluating and selecting risk mitigation strategies by considering
various risk categories, risk sources, and supply chain configura-
tions. Our methodology focuses on an empirically grounded, dis-
crete event simulation, coupled with data envelopment analysis
(DEA) and nonparametric statistical analysis (Kruskal–Wallis
test), to determine the most appropriate mitigation strategies
across a variety of aforementioned conditions and configurations.
To the best of our knowledge, such an analysis has never
been undertaken before and will prove useful for companies
designing supply chains that can better respond to unanticipated
failures.

The rest of the article is organized as follows: The next sec-
tion reviews relevant risk management in supply chains literature
and addresses the related gaps. Following the literature review is
a discussion of our theoretical framework. We then present our
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methodology, analyze the results of our study, and discuss the
managerial implications. The final section focuses on conclusions
and potential extensions of this research.

LITERATURE REVIEW

In this section, we review studies on supply chain risk manage-
ment that are most relevant to the topic of this article and we
highlight some of the key issues requiring further attention. We
refer the interested reader to Tang (2006), Zsidisin and Ritchie
(2008), Sodhi et al. (2012), and Tang and Musa (2011) for a
thorough review on supply chain risk and disruption manage-
ment literature.

There is a significant amount of work related to identifying
the types of supply chain risks. Although most of this work does
not explicitly differentiate between the sources and categories of
risk, we find it very useful to look at risk types through these
two dimensions. With respect to the sources of risk, several stud-
ies exclusively consider either supplier and supply risk (see, e.g.,
Craighead et al. 2007) or customer and demand risk (see, e.g.,
Federgruen 1993; Schwarz and Weng 2000; Qi et al. 2004).
While these two approaches can be useful for addressing issues
in isolation, they do not help form a holistic understanding on
how a strategy performs across multiple sources and types of
risk. Snyder et al. (2006) emphasize a holistic approach by argu-
ing that decision makers should take supply uncertainty into
account during all phases of supply chain planning, just as they
account for demand uncertainty. Our work takes a similarly
encompassing approach and explicitly examines risks emanating
from both supply and demand sides, in addition to considering
internal risks associated with the manufacturer. Our methodology
follows a risk-source classification similar to those in Davis
(1993) and Chopra and Sodhi (2004), but goes beyond these
approaches by empirically testing the efficacy of alternative risk
mitigation strategies under a variety of supply chain configura-
tions.

In terms of risk categories, recurrent risks and disruptions are
among the two most studied risk categories in the literature, and
a vast majority of risk events fall into one of these two catego-
ries. Tomlin (2006) recognizes the features of disruptions by cat-
egorizing long-but-rare disruptions and short-but-frequent
disruptions in planning mitigation strategies. Similarly, Chopra
et al. (2007) show the importance of recognizing and decoupling
disruptions and recurrent risks when planning mitigation strate-
gies in a supply chain. We further disaggregate recurrent risks
into delays and distortions following Gaonkar and Viswanadham
(2004), as recurrent risks related to time and quantity of orders
are naturally different. Thus, we focus on three broad risk cate-
gories: delays, disruptions, and distortions. A delay in material
flow can be viewed as a recurrent risk and can occur because of
many reasons, such as variations in transportation or production
lead times. A disruption occurs when the supply chain is radi-
cally and unexpectedly transformed through nonavailability of
certain production, warehousing, distribution, or transportation
options, such as equipment failure. A distortion, also known as
“forecast risk,” occurs when one or more parameters within the
supply chain system, such as order sizes, stray from their fore-
casted and expected values.

Extensive research has been performed to reveal approaches
firms can use to mitigate certain supply chain risks. For instance,
Sheffi et al. (2003) describe mechanisms that companies follow
to assess terrorism-related risks, protect the supply chain from
those types of risks, and attain resilience. They report case stud-
ies and interviews with companies’ executives. Christopher and
Lee (2004) suggest that a key element in any strategy to mitigate
supply chain risks is improved visibility, and they argue that sup-
ply chain confidence will increase in proportion to the quality of
supply chain information. Many proposed risk mitigation strate-
gies focus on uncertainty of demand or lead-times through the
use of decision models. For instance, Schmitt et al. (2011) deal
with choosing between risk pooling and risk diversification strat-
egies by considering contingency approaches subject to disrup-
tions. Other risk mitigation strategy literature goes beyond
inventory-based models with demand uncertainty and instead
focuses on production or supply rate changes. For example,
Wang et al. (2010) investigate process improvement and dual-
sourcing strategies to handle supplier reliability, and they present
whether and how characteristics of the supply base influence
strategy preference. Demirel et al. (2012) also compare single-
and dual-sourcing strategies in the face of production disruptions
using a game theoretical model. These studies show that strate-
gies should address supply variability across multiple tiers in the
supply chain but generally do not take a more comprehensive
view by also considering multiple channels. To overcome this
issue, we focus on a dual-channel supply chain in this study.

In selecting a risk mitigation strategy to counter against a par-
ticular risk type, it is important to test and compare alternative
risk mitigation strategies in a comprehensive manner. Tomlin
(2009) evaluates 12 possible disruption management strategies in
the context of a two-product newsvendor. His results show that
contingent sourcing is preferred to supplier diversification as the
supply risk increases, but diversification is preferred to contin-
gent sourcing as the demand risk increases. With the exception
of Tomlin’s (2009) study, the majority of the work in this area
tests and compares few strategies in isolation. This article fills
this gap by testing several alternative risk mitigation strategies
under various risk and source combinations.

As detailed above, scholars have utilized a variety of
approaches to analyze supply chain risks under various conditions,
but there are gaps in the extant literature that we address in this
study. Much of the literature does not allow for the simultaneous
incorporation of traditional cost and noncost factors in evaluating
the effectiveness of strategies, which is one of the advantages of
our approach in considering a more holistic evaluation process. In
addition, we utilize industry-specific cost data and perform sensi-
tivity analysis to demonstrate the impact of cost changes in the
evaluation of the mitigation strategies. Moreover, the literature
does not adequately cover the responsive element of supply chain
risk (Sodhi and Tang 2012) and our work addresses this issue to a
certain extent by providing guidelines for what specific strategies
to utilize in response to a particular risk.

Finally, early research in supply chain risk management has
mostly been conceptual, case-based, or survey-based research. In
recent years the focus has shifted toward quantitative models. As
stated by Melnyk et al. (2009), case-based and empirical research
is limited because it is difficult to evaluate how an event taking
place at a supplier affects the performance of the firm and the
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overall supply chain, since we have to identify and account for
the impact of any policies used and actions taken by the supplier.
To develop a better understanding of supply chain disruptions—
i.e., how to describe them, what factors influence them, and what
policies/strategies can be used to deal with them—computer-
based discrete event simulation is an approach that can add
value. Moreover, simulation enables us to test the impact of
internal and external environments on supply chain performance
and the effectiveness of applying various risk mitigation strate-
gies. In the context of supply chain risk, few studies utilize simu-
lation. Levy (1995) presents a simulation model to examine the
impact of demand uncertainty and supplier reliability on the per-
formance of different supply chain network designs. Wilson
(2007) developed a system dynamics simulation model to inves-
tigate the impact of a transportation disruption on supply chain
performance by comparing a simple supply chain with a vendor-
managed inventory system. Kull and Closs (2008) use discrete
event simulation to show the effects of inventory and second-tier
supplier disruptions on customer service. Munoz and Clements
(2008) present a discrete event simulation of the Beer Distribu-
tion Game to quantify the potential lost sales revenue attributed
to information and material delays in a supply chain. Dong et al.
(2009) present a generalized simulation framework for tactical-
level decision making for supply network analysis. Clearly, none
of these studies are devoid of limitations. As some of the recent
comprehensive reviews note (see Tang and Musa 2011 and Musa
2012), there is a dearth of in-depth simulation studies in the liter-
ature. Our study fills this gap and extends the supply chain risk
simulation literature by using the simulation method that is
grounded by secondary data and that is used in conjunction with
DEA for efficiency evaluations.

THEORETICAL FRAMEWORK

Contingency Theory stems from behavioral theory and suggests
that there is no universal set of choices that is optimal for all
businesses (Gingsberg and Venkatraman 1985). The theory
argues that optimal decisions within a firm are contingent on
internal and external factors and the best way to organize
depends on the nature of the firm’s environment (Donaldson
2001). Performance, therefore, is affected by how well organiza-
tional resources match the corresponding business environment
(Kim and Pae 2007). Several contributions have been made on
this topic of the relationship between fit and performance in dif-
ferent fields of research, such as strategic management (Venkatr-
aman 1989) and organization theory and design (Donaldson
2001). We base our theoretical framework on CT because firms
that operate under risky conditions will implement mitigation
strategies whose appropriateness and effectiveness are contingent
on the internal and external environment.

This theoretical view is also utilized in other research studies
on risk mitigation. Drawing upon CT, Park (2011) identifies
internal risk, supply-related risk, customer-related risk, external
risk, and risk taking propensity as antecedents that result in firms
implementing flexibility- and redundancy-based supply chain risk
mitigation strategies. Trkman and McCormack (2009) use CT to
analyze the often conflicting findings on the role of environmen-
tal turbulence in supply chain risk management. They suggest a

framework for the assessment of supplier risk of disruption based
on a few factors that are modified by turbulence in their environ-
ment. Wagner and Bode (2008) apply CT and strategic choice
theory to the relationship between supply chain risk and supply
chain performance, and present hypotheses stating that the risk
derived from various supply chain sources undermines supply
chain performance. Given the applicability of CT in this context,
we anchor our work in this domain and evaluate alternative miti-
gation strategies with the premise that utilization of a strategy is
contingent on the internal and external environment to which the
firm is exposed. Thus, we develop our article based on this theo-
retical lens.

METHODOLOGY

Simulation has long been used in operations management, logis-
tics, and supply chain management (see Bowersox and Closs
1989; Chang and Makatsoris 2001; Holweg and Bicheno 2002;
Shafer and Smunt 2004; Terzi and Cavalieri 2004; Kleijnen
2005; Evers and Wan 2012). Simulation experiments are effec-
tive and practical tools for analyzing supply chain phenomena
(see Swaminathan et al. 1998 and Smaros et al. 2003). As dis-
cussed in the literature review section, few studies utilize simula-
tion in the context of supply chain risk. This is likely because
guidelines for supply chain risk simulations have only recently
appeared (see Melnyk et al. 2009), and determining realistic
parameters and settings can be challenging.

To compare alternative mitigation strategies, we conducted a
simulation experiment, grounded in supply chain and simulation
modeling theory (Swaminathan et al. 1998 and Law and Kelton
2000), to generate data on the effects of different strategies within
different scenarios. Such an approach resembles the “what-if”
supply chain risk analysis called for by Craighead et al. (2007).
We used DEA to evaluate the resulting data from the simulation
and generate the relative efficiency scores of alternative mitigation
strategies under various supply chain structures. Since we were
required to consider several factors in evaluating the effectiveness
of alternative strategies, we selected DEA technique since it
allows for the consideration of multiple factors in the form of
inputs and outputs in the evaluation process. Subsequently, we
utilized nonparametric statistical tests (Kruskal–Wallis) to identify
the optimal mitigation strategies for a given supply chain struc-
ture. We employed this secondary method of testing to identify
strategies that are not statistically different since it allows the deci-
sion maker to select the best strategy based on other factors, such
as ease of implementation or resources available.

Simulation model

The influence diagram in Figure 1 depicts the processes that we
incorporated into the simulation model. As shown, supply chain
costs, such as transportation and inventory, and supply chain per-
formance measures, such as service levels and cycle times, are
impacted by supply chain configurations, such as ordering poli-
cies and demand variation. However, supply chain failures of dif-
ferent sources and categories negatively impact costs and
performance, while mitigation strategies of different types lessen
these negative impacts (Chopra and Sodhi 2004). Following this
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basic framework, we built a simulation model to accommodate
the multitude of possibilities.

Simulation structure
To capture the essential features of each mitigation strategy while
incorporating the increasingly common multichannel structure,
we created a firm managing two parallel supply channels (Fig-
ure 2). Because supply chain phenomena are of interest, we
assumed the focal firm performs light manufacturing to reduce
internal manufacturing complexities. In the base case, we
assumed both channels are supplied independently by a single

supplier and serve independent customer markets that do not
interact—a plausible condition if customer markets are heteroge-
neous or channel characteristics are diverse (Anderson et al.
1997). However, as described below, some mitigation strategies
(designated by numbers in Figure 2) have these supply channels
interacting in various ways. In Figure 2, we show a simple pro-
duction cycle within each operation transforming raw material
into finished goods. We constructed this simulation to model the
flows within this supply chain structure.

The simulation is empirically grounded and approximates the
operating levels found in top performing supply chains as
reported in Industry Week’s value-chain survey.1 Before intro-
ducing failures and strategies, manufacturing operations are con-
figured to meet a 99% minimum service level, while optimizing2

and minimizing excess manufacturing capacity and inventory
levels. Suppliers are also configured to replicate the same Indus-
try Week benchmarks. Basic model parameters and distribution
assumptions are shown in Table 1 and are based on previous
studies (Petrovic et al. 1998; Kull and Closs 2008). Thus, our
model is grounded both in theory and in industrial practice.

When modeling supply chains, inventory control policies are a
primary concern (Swaminathan et al. 1998). For the manufac-
turer’s finished goods, we used a continuous review (s, S) order-
ing policy because of its popularity and efficiency in a light
consumer goods industry (Scarf 1962; Ballou 2004). Our study
assumed the following: a production order is issued when the
inventory position (IP), which is calculated as on-hand + in-pro-
cess amount, falls below s, with the order quantity determined
by S � IP. To control the raw material, the manufacturer uses a
periodic order-up-to policy in conjunction with a (s, S) policy
(Petrovic et al. 1998; Gavirneni et al. 1999). Weekly replenish-
ment orders are issued to the supplier to provide raw material
levels up to a specified maximum quantity (M). With the param-
eters s, S, and M, the manufacturer controls the amount of fin-
ished and raw material inventory and the frequency of
production orders.

Supply chain failures
Chopra and Sodhi (2004) describe how three types of supply
chain failures—disruption, delays, and distortion3—can occur
from three different sources—supplier, manufacturer, and cus-
tomer. Together, these failures form the nine failure types shown
in Table 2. Disruptions relate to an unexpected drop in supply or
spike in demand and we modeled disruptions either as a decrease
in capacity or an increase to the order volume. Delays pertaining
to individual orders delivered later than expected are modeled as
increases in mean cycle time. Distortions related to unforeseen
changes in order size, a key feature of the bullwhip effect (Lee
et al. 1997), are modeled as larger but less frequent order quanti-
ties. When a particular risk is instigated in this study, it is
applied to both channels simultaneously yet independently.

We would like to note that, as illustrated in Table 2, the sup-
ply chain risks are considered only in one direction. For exam-

Risk Source

Risk Mitigation Strategy

Supply Chain Configuration

Risk Category
Performance

Impact a
System
Costs b

Figure 1: Experimental framework.

aOperating performance (i.e., customer service level, inventory turns,
etc.) of both manufacturing facilities. bCosts expected to vary with the
strategy, risk type, and configurations.
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Strategy key:
S1 Increase capacity (handling a higher volume) 
S2 Increase inventory (holding more in stock)
S3 Increase responsiveness (producing faster)
S4 Increase flexibility (requesting small production orders)
S5 Aggregate demand (servicing multiple markets)
S6 Increase capability (sharing production requirements)
S7 Redundant suppliers (using multiple suppliers)

Figure 2: Risk mitigation strategies mapped onto the supply
chain structure.a

aDepiction of supply chain structure and location where risk mitigation
strategy is in effect, noting that Operation 2 shares a similar mapping
but is not shown for simplicity.

1

http://www.industryweek.com/benchmarking
2

Using ARENA’s Optquest feature (Kelton et al. 2004).
3

Chopra and Sodhi (2004) referred to this as information pro-
cessing and forecast risk.
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ple, for customer-related distortion risk, we only considered the
case where the customer orders in larger batches. However, if a
customer orders in smaller batches, the case would be considered

a distortion risk as well. In some of the other cases, but not all, a
deviation from status quo in either direction could result in sup-
ply chain issues. Since our paper is the first to broadly examine
the various risk category–risk source combinations, we took a
parsimonious approach and chose only one direction of change.

Mitigation strategies
This study utilized two main risk mitigation strategy types that
are identified in the literature and used in practice: redundancy
and flexibility. Rice and Caniato (2003) and Rice and Sheffi
(2005) claim that firms can strengthen their resilience by either
building in redundancy or by building in flexibility. Rice and
Sheffi (2005) also emphasize that flexibility brings in benefits in
the normal course of business, even if there are no risk realiza-
tions. According to Christopher and Peck (2004), resilient pro-
cesses are both flexible and agile. Furthermore, Christopher and
Peck (2004) also state that supply chains should reexamine the
efficiency versus redundancy trade off. Taleb et al. (2009) state
that lack of redundancy makes companies vulnerable to changes
in the environment, and they posit redundancy as a good risk
management strategy. We considered the seven risk mitigation
strategies that Chopra and Sodhi (2004) proposed, which can be
classified into either redundancy or flexibility strategies. Specifi-
cally, increasing capacity, redundant suppliers, and increasing
inventory are redundancy strategies. Increasing responsiveness,
increasing flexibility, aggregating demand, and increasing capa-
bility are flexibility strategies. We introduced each strategy inde-
pendently and tested across all nine possible failure types. We
chose to follow the advice of Chopra and Sodhi (2004) in select-
ing the parameters for mitigation strategies so that these values
are large enough to reveal effects, but small enough to represent
what is realistic.

Before introducing failures and strategies, we configured man-
ufacturing operations in accordance with approaches by Gavirne-
ni et al. (1999) and Kull and Closs (2008) to meet at least a
99% service level. That is, a search procedure within the simula-
tion software is utilized with multiple iterations across varying
levels of capacity and inventory in a step-wise fashion to find
the lowest value to meet the service level threshold. Thus, we
created a base case that removes potential confounds to perfor-
mance when supply chain failures scenarios are examined.

Mitigation Strategies 1 through 4 are intra-operational. The
first strategy relates to capacity, which places limits on when an
operation can produce orders (Slack and Lewis 2008), and is

Table 1: Supply chain model assumptions

Parameter assumptions*
Mean
(days) Distribution

Supplier processing time 1.0 Normal (SD = 0.3)
Transit time to
manufacturer

5.0 Lognormal

Manufacturer purchase
order time

0.3 Triangular (min = 0.1,
max = 1.0)

Manufacturer sales
order time

0.5 Triangular (min = 0.2,
max = 2.0)

Customer demand assumptions
Interarrival times are daily, constant, and for a single product;
Demand distribution is uniform with mean 100 and range
�20% or �40%.
Model operations assumptions
All facilities operate 24 hr per day, 7 days per week;
Finished goods and raw material stock levels preloaded with
typical days-on-hand (DOH) inventory;
Order policies are determined based upon strategic goals and no
supply chain failures;
Order policy parameters are constant throughout simulation run;
Simulation run is 4,000 days after a 100-day warm-up; 10
replications, 252 scenarios;
Finished goods follow an (s, S) policy for production orders;
Raw material follows a 5-day periodic review, order-up-to
policy (M = max qty) for purchase orders;
Cost assumptions†

$40 processing cost per order;
$450 logistics cost per shipment;
$2.4 per finished good DOH for each day;
$1.1 per work-in-process and raw material DOH for each day.‡

Notes: *Closs et al. (1998).
†Derived from CAPS Benchmarking Report (2007) assuming $100 per
unit sales price.
‡Cost of capital from the Value Line database of 7,364 firms. http://
pages.stern.nyu.edu/~adamodar/New_Home_Page/

Table 2: Types of supply chain risks

Risk category*

Risk source

1. Supplier-related 2. Internal 3. Customer-related

1. Disruptions Supplier capacity drops by 20%–r11 Operational capacity drops by 20%–r12 Demand goes up by 20%–r13
2. Delays Deliveries delayed by 4 MCT†–r21 Production orders delayed by 4 MCT–r22 Customer orders delayed

by 4 MCT–r23
3. Distortion Supplier increases minimum

order size by 20%–r31
Production orders must
increase size by 20%–r32

Customers order in 20%
larger batches–r33

Notes: *Selected based upon nature of failure and possibility of emanating from each of three risk sources.
†Manufacturing cycle time (MCT) = Average order processing + Manufacturing processing time.
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simulated as how often the schedule is open for new orders.
When a capacity strategy was used, capacity increased by 20%.
The second strategy involves increasing inventory, both raw
material and finished goods, and is controlled by the policy
parameters M and s, respectively. When an inventory strategy
was used, these increased by 20%, which resulted in an increase
of both cycle and safety stock levels. The third strategy increases
responsiveness, which is related to faster deliveries, and is also
simulated as a 20% increase in production rates. The fourth
intra-operational strategy increases flexibility, which can be
achieved with changing batch sizes because production volume
will closely match demand, queue sizes will be reduced, and
customers wait less for large batch completion (see Buzacott and
Yao 1986; Agus and Mohd Shukri 2012). Thus, we simulated
flexibility by reducing production order quantities by 20%.
While we utilized 20% as the standard percentage change in all
of the cases, the model can easily be modified to consider other
levels.

Our research also simulated mitigation strategies 5, 6, and 7 as
inter-operational, relating to activities between operational chan-
nels. As such, Strategy 5 involves aggregating demand and is
simulated following the work of Ballou and Burnetas (2003),
where customer orders are allowed to be serviced by the
alternate supply channel if finished goods inventory is available.
Similarly, Strategy 6, increases capability; that is, it allows
production orders to be completed by the operation in the other
supply channel if raw material is unavailable at the current chan-
nel. Finally, Strategy 7 involves using redundant suppliers. This
strategy is simulated using purchase order splitting between the
two suppliers (Thomas and Tyworth 2006). In addition, different
supply chain conditions impact the usefulness of mitigation strat-
egies; in particular, demand variability and supply uncertainty
are two critical factors. These two dimensions are varied from
low to high as shown in Table 3.

Simulation formulation and validation
To simulate the supply chain structure and experiment with the
various risk elements, we utilized ARENA V4.01 simulation by
Rockwell Software (Kelton et al. 2004). ARENA is a discrete
event simulator, combining the SIMAN simulation language with
a graphical interface, which aids the visual tracing of orders and
material, and allows for operational and conceptual model valid-
ity (Sargent 2000). The logical flow of orders, production, and
transportation is assured through use of standard simulation flow
charts (Banks and Gibson 2001). Following Law and Kelton’s
(2000) techniques for simulation model development, and consis-
tent with previous studies (Wan and Evers 2011), we pro-
grammed submodels and verified them individually before
inclusion into the larger model so as to simplify debugging. In
addition, supply chain performance graphs showed expected
results during model test-runs under extreme settings (e.g., exces-
sive production or transportation times).

Important to the simulation experiment were initial conditions,
warm-up length, run length, factorial design, and replications
(Law and Kelton 2000). We set initial inventories at the expected
average. Given that preliminary observations found orders to
propagate rapidly and that the system reached steady state
quickly, we utilized a 100-day warm-up length, followed by a
4,000-day run length. We chose 10 replications with unique ran-

dom number seeds based on Law and Kelton’s (2000) proce-
dure.4 Since the seven mitigation strategies were compared
across the nine risk types under four supply chain conditions,
shown in Table 3, we utilized a 7 9 9 9 4 full factorial design
with 10 replications, producing 2,520 samples.

For each sample, we provided five performance outcome aver-
ages over the entire simulation run. We computed average total
cycle time by summing the average cycle time for sales orders,
production orders, and purchase orders, and we calculated the
average customer service level using percentage of nonbacklog
orders. We used average days-on-hand inventory instead of
actual amounts to improve generalizability. Our methodology
generated utilization rates based on how often resources are busy
producing orders. Finally, we calculated variable costs using
published cost values (see Table 1) that pertain to those variables
affected by the factors in the model: inventory holding costs,
ordering costs, and transportation costs. Values for both supply

Table 3: Experimental design

Factor type Factor name Settings

Risk types Risk categories Disruption/Delays/
Forecasts

Risk sources Supplier/Internal/
Customer

Supply chain
configurations

Demand variation Low/High*
Risk likelihood Low (0.2)/High (0.4)

Mitigation
strategies

1. Increase capacity +20% capacity
2. Increase inventory† +20% cycle and safety

stock
3. Increase

responsiveness
�20% cycle time§

4. Increase flexibility �20% production
quantity¶

5. Aggregate demand +cross filling**
6. Increase capability +transshipment††

7. Redundant
suppliers‡

+supplier

Notes: *Standard deviation from an expected constant demand rate.
†Increase parameters for ordering policies for both finished goods and
raw material.
‡Uses supplier splitting (Thomas and Tyworth 2006).
§Decrease ordering and manufacturing processing times.
¶Accompanied by an increase in frequency.
**Send order to other manufacturing facility if finished goods are
unavailable (Ballou and Burnetas 2003).
††Allow manufacturing facilities to produce products for each other if
raw material unavailable.

4

To compute the number of replications, the largest relative
variance [Var(x)/Avg(x)] among the outcome variables was
determined for 10 replications. Then using formula 9.3 from
Law and Kelton (2000, 512), n�ðcÞ ¼ minfi� n :
ti�1;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðnÞ=ip

=j�XðnÞj � cg, where gamma is the relative
error, it was determined that 10 replications were appropriate for
at most a 1% relative error among all the outcome variables.
Law and Kelton (2000) recommend at least a gamma of .15 and
an n of 10 or more.
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channels were computed and combined where applicable for
overall averages. These values were then analyzed using the
DEA model, which also incorporates fixed costs as detailed in
the results section later.

Data envelopment analysis

DEA is a linear programming-based technique that evaluates the
relative efficiencies of a homogenous set of decision-making
units (DMUs) in the presence of multiple input and output
factors. Efficiency is defined as the ratio of weighted outputs to
weighted inputs. In this study, we used DEA to identify the
efficiency of the seven risk mitigation strategies, which corre-
spond to DMUs in the context of this method. The only output
considered in our evaluations is the cycle service level (CSL),
whereas the inputs are total costs (fixed and variable), total
average cycle time, and total inventory days on hand. Note that
we utilized factors where low is better as inputs and high is
better as outputs, which is consistent with one of the ways by
which inputs and outputs are categorized in DEA (see Khouja
1995).

The strengths of DEA are that it does not require limiting
assumptions of many parametric methods, such as normality and
equal variance; it does not need a priori factor weights to be
specified in the evaluation process; and it is based on best prac-
tice, not average (mean) practice. DEA has extensively been uti-
lized in the efficiency evaluation of various DMUs, such as
schools, bank branches, hospitals, and manufacturing plants
(Charnes et al. 1994). The DEA model as first introduced by
Charnes et al. (1978), referred to as the CCR model, is shown
below as problem (1):

Problem (1):

max

Ps
k¼1

vkykp

Pm
j¼1

ujxjp

s:t

Ps
k¼1

vkyki

Pm
j¼1

ujxji
� 1; 8i

vk; uj � 0 8k; j

where xji and yki indicate the jth input and kth output of the ith
DMU (i.e., risk mitigation strategy in this study), respectively;
xjp and ykp indicate the jth input and kth output of the pth DMU
that is being evaluated, respectively; uj and vk are the weights
assigned to jth input and kth output, respectively.

In the above model, each DMU “selects” input and output
weights that maximize its efficiency score subject to constraints
that prevent the efficiency scores of all the DMUs when evalu-
ated with these weights from exceeding a value of 1. Thus, the
input and output weights selected by a DMU are the decision
variables in the model. A DMU is considered to be efficient if it
achieves a relative efficiency score of 1 and is deemed inefficient
with a score of less than 1. Problem (1) is a nonlinear model and
can easily be converted to a linear programming model as shown
in problem (2):

Problem (2):

max
Xs
k¼1

vkykp

s:t
Xm
j¼1

ujxjp ¼ 1

Xs
k¼1

vkyki �
Xm
j¼1

ujxji � 0; 8i

vk; uj � 0 8k; j
Problem (2) is solved once for each DMU in determining the

relative efficiency scores. The dual problem of the above linear
program is shown as problem (3) below:

Problem (3):

min h

s:t
X
i

kixji � hxjp 8j
X
i

kiyki � ykp 8k

ki � 0 8i
where h represents the efficiency score of DMU p and ki are the
dual variables.

Because problem (3) is the dual problem, the objective func-
tion minimizes the efficiency score of unit p. The first two con-
straint sets in the model try to identify a composite unit,
constructed from DMUs in the set, which utilizes less input than
DMU p while generating at least the same output levels. If such
a composite unit is identified, then DMU p that is being evalu-
ated achieves a score of less than 1 and is considered to be inef-
ficient. While the above problem works under the assumptions of
constant returns to scale, Banker et al. (1984) extend problem
(3) to consider variable returns to scale by including a convexity
constraint that limits the summation of the k values to 1, as
shown in problem (4) below, and referred to as the BCC (Banker
et al. 1984) model:

Problem (4):

min h

s:t
X
i

kixji � hxjp 8j
X
i

kiyki � ykp 8k
X
i

ki ¼ 1

ki � 0 8i

Readers are encouraged to review the DEA references pro-
vided for more detailed information on model development.

Using the output from the simulation analysis, our methodol-
ogy utilized the variable returns to scale structure of problem (4)
to conduct DEA efficiency evaluations based on a variety of fac-
tors. In most production settings, the use of the BCC model
works under the logical assumption that outputs cannot increase
proportionally to increases in inputs.

In a traditional DEA application, it is critical to categorize inputs
and outputs in a manner such that inputs are generally resources uti-

Efficiency of Risk Mitigation Strategies 259



lized and outputs involve a variety of performance and activity mea-
sures, such as flow times, quantity and quality of products produced,
work-in-process levels, utilization rates, etc. This is because in a tra-
ditional DEA application, we generally investigate how the ineffi-
cient DMUs either reduce their inputs for the same level of outputs,
or increase outputs for the same level of inputs in order to become
efficient, that is, input-oriented and output-oriented DEA methods.
Such an analysis provides managers with information regarding
how to adjust the input/output factors of inefficient DMUs to make
them efficient. However, in the context of our study, we were
merely trying to differentiate between strategies that are efficient
and strategies that are inefficient. Since we were not focusing on
specific improvements associated with DMUs, it is reasonable to
consider factors where “low” is better as inputs and factors where
“high” is better as outputs. Our approach is similar to what Khouja
(1995) utilizes in his study. DEA in our analysis defines an efficient
mitigation strategy as having: high levels of output (high CSLs);
and low levels of inputs (low total costs [variable costs + fixed
costs = total transportation costs + inventory costs + fixed costs],
low total average cycle time [average sales order cycle time + aver-
age manufacturing order cycle time + average purchase order cycle
time], and low total inventory days on hand [finished
goods + work-in-process + raw materials]). Thus, we can view this
as a score that is being maximized based on variety of factors.

Kruskal–Wallis test

The DEA efficiency scores in our research were generated based
on the three inputs and one output by considering all the 2,520
samples from the simulation analysis. Homogenous groups of
mitigation strategies were subsequently obtained by investigating
significant differences in efficiency scores among alternative
strategies under a specific scenario combination; this investiga-
tion was conducted through the Kruskal–Wallis test (Conover
1999). The Kruskal–Wallis test is a nonparametric version of the
standard F-test that is utilized under conditions of nonnormality.
Since the efficiency scores do not lend themselves to assump-
tions of normality, we have considered the test for evaluating
efficiency differences. The null and alternative hypotheses for the
test in the context of our analysis are shown below:

H0: The k population (mitigation strategies) distribution
functions are identical.

Ha: At least one of the populations (mitigation strategy)
yields larger observations than one of the other popula-
tions.

Test statistic is shown as expression (5) below:

H ¼ 12
N N þ 1ð Þ

Xk
i¼1

R2
i

ni
� 3 N þ 1ð Þ ð5Þ

where: k, the number of samples; ni, the number of observations
in the ith sample, where i = 1 through k; N = Σni, the number
of observations in all samples combined; Ri, the sum of the ranks
in the ith sample.

Decision Rule: if H > X2 (k � 1, 1 � a), then reject H0;
otherwise, fail to reject H0, where a is the probability of making
a type I error.

Once we rejected the null hypothesis, we evaluated the best
strategies based on the pair-wise (strategy i vs. strategy j) differ-
ences of efficiency scores associated with the test. We made mul-
tiple comparisons using a one-way ANOVA to determine which
samples are different. The samples i and j are different when the
inequality shown as expression (6) is satisfied:

Ri

ni
� Rj

nj

����
����[ t1� a

2ð Þ S2
N � 1� T
N � k

� �1
2 1

ni
þ 1
nj

� �1
2

ð6Þ

where:

S2 ¼ 1
N � 1

X
allranks

R Xij
� �2�N

ðN þ 1Þ2
4

 !
ð7Þ

R(Xij), the rank assigned to observation j in ith group; t, the
(1 � a/2) quantile of t distribution with r � k df; a, the same as
in the Kruskal–Wallis test.

DATA, RESULTS, AND DISCUSSION

The efficiencies of the seven mitigation strategies depend, in
part, on the fixed costs associated with using each strategy. In
order to ground the model in actual industrial costs, we used data
from the U.S. Census Bureau5 and from CAPS Research (a glo-
bal research center for strategic supply management). Data were
summarized by NAICS code to provide a range of typical cost
values relative to the value of total capacity. We derived a low
and high estimate to test the sensitivity of our results to the
changes in fixed costs. Table 1A in the Appendix summarizes
the operationalization of fixed costs, the formulas utilized, and
the values used for each mitigation strategy. Strategies 2 and 4
do not have fixed costs, as these strategies increase only the vari-
able cost and do not require up-front investments. Strategy 5 is
actualized by closing down one facility and pooling machinery
into one large facility, which reduces fixed costs, much like sav-
ings derived from consolidation and economies of scale. The
other remaining four strategies—1, 3, 6, and 7—have traditional
fixed costs associated with them. The procedure utilized for cal-
culating these costs is explained in detail in the Appendix.

All data used for these estimations are available for 21 indus-
try categories (see Tables 2A and 3A). This granularity allowed
us to choose a specific industry and use the fixed cost estimates
for that industry. To test the impact of the increase in fixed cost
estimates on the efficiencies of mitigation strategies, we calcu-
lated efficiencies for the lowest and highest values of fixed costs.
For instance, the fixed cost for Strategy 1 is the lowest for the
furniture and related product industry ($263,069) and the highest
for the computer and electronic industry ($710,287).

As discussed earlier, we evaluated a total of 2,520 scenarios
with respect to the three inputs and one output in evaluating the
relative efficiency scores. We obtained variance within a specific
configuration with the 10 replicates generated for each case.
Table 4 depicts the results of our analysis based on statistical
comparisons of efficiencies (based on the Kruskal–Wallis test),
and demonstrates the best (most efficient) strategies for each risk

5

http://www2.census.gov/econ2010/AM/sector31/
AM1031GS101.zip
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category and supply chain configuration combination. For exam-
ple, if the type of risk category is disruption and it is supplier-
related and occurs in a situation where the demand variability
and risk likelihood is low, then the most efficient mitigation
strategies are 1 (increase capacity), 3 (increase responsiveness), 4
(increase flexibility), and 5 (aggregate demand) when fixed cost
is low, and 1, 4, and 5 when fixed cost is high. This type of
analysis provides an excellent roadmap for the decision maker
by outlining which mitigation strategies to focus on for a specific
risk and supply chain configuration. An interesting finding
reveals that decision makers have a set of strategies that are
equally effective; that is, the efficiency differences between them
are not statistically significant. This analysis provides the deci-
sion maker with alternative choices, and the decision can be
based on ease of implementation of a particular strategy.

Table 4 reveals the importance of taking a CT perspective and
sheds light on what strategies are robust across risk scenarios and
supply chain configurations. For example, if the type of risk cate-
gory is disruption and it is internal, then Strategy 3 (increase
responsiveness) and Strategy 7 (redundant suppliers) work best

across all supply chain configurations when the environmental
condition is of low fixed cost. By contrast, Strategy 5 (aggregate
demand) is best when the environmental condition is high fixed
cost. These results reveal the importance in building environmen-
tal-contingent types of capabilities that lead to short- and long-term
mitigation strategies as the supply chain transforms. Decision
makers can use this information to plan for contingent capabilities
to better fit their environmental realities in order to manage risks
without increasing redundancy in the supply chain.

In addition, Table 4 points to which strategies are robust for a
given internal environment supply chain configuration. For exam-
ple, if the demand variability is high and risk likelihood is low,
then, in general, the best set of strategies across all risk types are
1 (increase capacity), 4 (increase flexibility), and 5 (aggregate
demand). If decision makers have clear knowledge of what spe-
cific supply chain contingencies they exist in, then this analysis
assists them in building situational-specific capabilities that miti-
gate various risks in an effective manner. The row and column
analysis for Table 4 provides important information for decision
makers to manage and appease related risks in their supply chains.

Table 4: Best Supply Chain Risk Mitigation Strategies for a Given Configuration and Scenario*

Risk Scenario

Fixed
costs

Configuration with respect to
demand variability (DV) and risk likelihood (RL)

Risk category Risk source
Low DV &
Low RL

Low DV &
High RL

High DV &
Low RL

High DV &
High RL

Robust for
given scenario†

Disruption Supplier-related Low 1,3,4,5 3,5,7 1,3,4,5 3,4,5,7 3,5
High 1,4,5 5 1,4,5 4,5 4,5

Internal Low 1,3,4,5,7 3,7 3,5 3,7 3,7
High 5 5 5 5 5

Customer-related Low 1,3,4,5 1,3,5,6 1,3,4,5 3,5 1,3,5
High 1,4,5 1,5,6 1,4,5 5 1,5

Robust for given
configuration†

1,4,5 5 1,4,5 5 5

Delay Supplier-related Low 3,6 3,6 3,6 3,6 3,6
High 5,6 5,6 3,5,6 5,6 5,6

Internal Low 3,7 3,6,7 3,7 3,6,7 3,7
High 5 5 5,6 5 5

Customer-related Low 3,7 3,7 3,7 3,7 3,7
High 5 5,7 5 5,7 5

Robust for given
configuration†

n/a n/a 3 n/a n/a

Distortion Supplier-related Low 1,4,5 4 1,4,5 1,4,5 4
High 1,4,5 1,4,5 1,4,5 1,4,5 1,4,5

Internal Low 3,5 3,5 3,5 3,5 3,5
High 5 5 5 5 5

Customer-related Low 4,5 3,5,6,7 1,4,5 3,5,6,7 5
High 4,5 5 1,4,5 5 5

Robust for given
configuration†

4,5 5 1,4,5 5 5

Notes: *Strategies are numbered as follows: (1) Increase capacity, (2) Increase inventory, (3) Increase responsiveness, (4) Increase flexibility, (5) Aggre-
gate demand, (6) Increase capability, and (7) Redundant suppliers.
†Strategy is considered robust if it appears in the majority of cells in a row or a column.

Efficiency of Risk Mitigation Strategies 261



Beyond the CT perspective, at a high level, the results we
obtained in this study mostly align with the recommendations
provided by Chopra and Sodhi (2004), although not all of their
recommendations are proved to be efficient. The two best strate-
gies across all risk types appear to be the same in our analysis
and in Chopra and Sodhi (2004): Strategies 5 (aggregating
demand) and 3 (increasing responsiveness). Thus, our article val-
idates the theoretical framework provided by Chopra and Sodhi
(2004) for risk mitigation. As for the least efficient strategies,
both studies identified Strategy 6 (increasing capability) as one
of the cases. Our results indicate Strategy 2 (increasing inven-
tory) as a second inferior case, which is not highlighted in Cho-
pra and Sodhi (2004). We see this finding as further validating
our efficiency perspective: holding just-in-case inventory is a
costly strategy that serves only to shield risks and does not aid
in risk recovery. In general, we find that the more efficient strate-
gies focus on flexibility rather than on redundancy for supply
chain failures. In the next section, we discuss specific managerial
implications associated with our results and expand on the rec-
ommendations for strategy selection.

MANAGERIAL IMPLICATIONS

Managers face the problem of designing their supply chains for
risk events that cannot be precisely predicted. Since supply chain
failures can occur in a multitude of forms, choosing a mitigation
strategy that protects the supply chain from many types of risks
simultaneously is more desirable than strategies applicable only
for a specific type of risk. To this end, we propose efficient strat-
egies that span across a variety of risks and supply chain config-
urations. This approach has important benefits for companies
wanting to mitigate risks both from effectiveness and resource
allocation standpoints. If a particular mitigation strategy works
well in appeasing multiple types of risks, management can allo-
cate scarce resources in developing that specific strategy instead
of designing multiple strategies that might not be cost effective.

In this study, we addressed concerns managers face in risk
management approaches. We find that the most efficient strate-
gies across many risks are not designed to shield firms from
effects (i.e., redundancy), but rather are designed to improve the
recovery process (i.e., flexibility). These results seem to be the
overarching reasoning for the best strategies we have identified.
In particular, the demand aggregation strategy—typically meant
to reduce demand variation so that inventories are lower (Eppen
1979)—is robust in allowing the supply system to divert orders
to other supply channels and prevent disruptions for customers.
Even though this strategy strains the alternate supply channel,
the effect is temporary and allows the failed channel time to
recover. Our results follow the theme of other research by rec-
ommending the resilience of a supply chain as a critical design
feature (see Christopher and Peck 2004; Sheffi 2005).

While certain mitigation strategies are dominant, we find evi-
dence for contingent efficiencies depending on the risk category,
risk source, and supply chain configuration. In other words, man-
agers must consider that some unique strategies are better suited
than others for given circumstances. For instance, while increas-
ing capacity and flexibility (Strategies 1 and 4) efficiently miti-
gates disruption risks in many of our scenarios, such strategies

are not as efficient for delay-type risks. Similarly, having sup-
plier redundancy (Strategy 7) is primarily seen as being efficient
for nonsupplier delay-type risks. One of the reasons for these
variations is that the type of risk often has a bearing on the
mechanism that makes a strategy useful. For example, Strategies
1 and 4 are useful because they allow quick recovery from fail-
ure, but a delay specifically diminishes this ability to recover
quickly. Similarly, supplier-related delays directly prevent sup-
plier redundancy (Strategy 7) from being beneficial. These results
show that managers who foresee specific types of risk as becom-
ing more probable can consider our study in developing a contin-
gency-based risk mitigation response.

Contingent effects of fixed costs and supply chain configura-
tions are also observed. Specifically, as an industry’s fixed cost
increases, strategies such as increasing capacity (Strategy 1) and
increasing responsiveness (Strategy 3) tend to diminish in effi-
ciency. This decline in efficiency is expected because such strate-
gies consume excessive resources in anticipation of an event.
Companies in the computer/electronics and chemical industries
that have higher fixed costs (as shown in Table 2A) should be
particularly sensitive to such information. As risks become more
probable, fewer efficient strategy options are available and demand
aggregation (Strategy 5) tends to dominate. This conclusion indi-
cates that as the prevalence of failures increases, the ability to
alternate how customers are served becomes highly critical.

Finally, managers must build into their contingency plans ways to
respond when competitive and supply environment changes as risks
become more or less likely. Knowing if transitions will be needed
from one strategy to another is important for supply chain design
choices and resource deployment. For example, if a company pre-
dicts that distortion risks will decrease and delay risks will increase,
it might need to reconfigure supply chain designs from a reliance on
excess capacity (Strategy 1) to a focus on increasing responsiveness
(Strategy 3). Thus, by having knowledge regarding the relationships
between risks and strategies, forward-thinking supply chain manag-
ers and decision makers can build strategy transitions into their long-
range planning and supply chain designs. Moreover, certain strate-
gies have path dependencies (e.g., building cross-filling capabilities
to create transshipment capabilities). This somewhat restricts how
easy future strategies are to implement. We show how strategies
group by statistical equivalence (i.e., differences are statistically
insignificant). This points decision makers toward options as they
map out mitigation strategies that are not only efficient, but are also
easier to implement and better aligned with their firms’ capabilities.

CONCLUSIONS AND EXTENSIONS

This study evaluates and compares the efficiency of alternative
risk mitigation strategies under a variety of risk categories, risk
sources, and supply chain configurations. We base our theoretical
framework on CT because the appropriateness and effectiveness
of risk mitigation strategies are contingent on the internal and
external environment, and because a blanket strategy does not
prove effective under all conditions. The article builds on the ini-
tial conceptual work of Chopra and Sodhi (2004) relating to risk
mitigation and optimal strategy selection in supply chains. In the
area of risk mitigation, to the best of our knowledge, this is the
first paper that looks at comprehensive evaluation of mitigation
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strategies. Thus, our work has important implications for aca-
demics and managers and sets the stage for future developments.

Our work effectively validates the suggestions developed by
Chopra and Sodhi (2004) for risk mitigation by using a well-
designed simulation study combined with DEA efficiency analy-
sis and nonparametric statistical methods. The article presents
robust results based on a scientific methodology from which
managers can benefit.

Our study also directs managers to robust and effective mitiga-
tion strategies under a variety of contingencies. This is important
in resource allocation decisions because managers can focus on
building and investing in competencies that can appease a variety
of risks. We find evidence that comports with other literature extol-
ling the benefits of supply chain resiliency through flexibility as an
efficient risk mitigation strategy, while showing costly redundancy
strategies, like inventory buffering, to be less preferred options.
Our results provide a useful roadmap for managers challenged by
the task of using limited resources to manage risks.

While this study makes significant advances in the research of
supply chain risk, it is not devoid of limitations. First, our simula-
tion experiment was designed around multichannel supply chain
arrangement. While many firms use such arrangements, particu-
larly with the advent of direct and brick-and-mortar supply chain
channels (Metters and Walton 2007), some managers may not face
such a scenario. However, our research can easily be extended to
a single channel arrangement that models a more traditional one
manufacturing plant scenario. Applying this study to single chan-
nel supply chain risk involves more complicating factors within
production, but such research would further enrich our framework.

While identifying the key parameters for the simulation and some
of the risk mitigation strategies, we chose mitigation strategy values
that are large enough to reveal effects, but small enough to represent
what is realistic. An alternative and more realistic approach may be
to include costs associated with risk events (including demand varia-
tions, supply variations, and the revenue impact of service levels)
when calculating those key parameters. This alternative model can
be a very useful extension to our study, where readers who become
aware of our findings will be able to select a specific strategy–risk
combination and find the optimal policy parameters.

Regarding the types of risks, Chopra and Sodhi (2004) note
numerous other events that we do not examine that can also result
in supply chain issues. These events deserve further study by tak-
ing a narrower but deeper look into each risk type. We also studied
risks and strategies in isolation. That is, we did not allow for multi-
ple risks or strategies to be interacting simultaneously. While this
approach was necessary in order to gain relational insights, further
research should consider how such interactions create complemen-
tary or counteracting effects. In addition, greater cost variations
can be introduced to further approach industry actualities. Finally,
we see the need for empirical validations by querying managers as
to what has worked in the past and why. These are some potential
extensions that can be considered to gain additional insights into
this important and practical area.

APPENDIX A

Fixed costs are calculated by using industrial annual cost esti-
mates. These figures are then scaled to the size of our simulated

company. For Strategies 1, 3, 5, 6, and 7, this calculation is per-
formed by using the proportion of the capacity of the simulated
company for the duration of the simulation run (FCAP) to the
annual industrial capacity (ICAP). Both capacities are expressed
in USD. The annual industrial capacity is calculated by dividing
the annual industrial value of shipments (TVS) by the industry
capacity utilization rate (IU). TVS is defined as the received or
receivable net selling values of all products shipped. IU is
obtained from the Quarterly Survey of Plant Capacity Utilization
(QPC),6 which provides quarterly statistics on the rates of capac-
ity use for the U.S. manufacturing sector. The QPC is conducted
across ~7,500 manufacturing establishments selected from the
Economic Census.

The capacity of the simulated company is calculated in a simi-
lar way by dividing the value of shipments by the capacity utili-
zation ratio obtained from the simulation results. Below we
explain the various industry costs used for the affected mitigation
strategy. The formulas used for each strategy and the value range
obtained are given in Table 1A.

Strategy 1 (increasing capacity) fixed cost is assessed as the
capital expenditures required for higher throughput. This cost is
estimated using the annual capital expenditures (ITCX) from the
U.S. Census, which represents total new and used capital expen-
ditures reported by establishments in operation and under con-
struction. These data include expenditures for permanent
additions, major building alterations, new and used machinery,
equipment used for replacement, and additions to plant capacity,
including transportation and information processing equipment.

Strategy 3 (increasing responsiveness) fixed cost is evaluated
as the expenditures for enhanced information processing. This
cost is estimated by using the expenditures for enhanced infor-
mation processing capabilities (ITE) from the U.S. Census.

Strategy 5 (aggregating demand) fixed cost is computed as the
savings from consolidating to a single facility. This cost is esti-
mated by using total annual building/structure expenditures (IBE)
from the U.S. Census with a typical depreciation used for build-
ings after average use (20% of original).

Strategy 6 (increasing capability) fixed cost is appraised as the
expenditures for enhanced machine processing. This cost is esti-
mated by using the total annual machinery and equipment expen-
ditures (IME) from the U.S. Census. Since Strategy 6 refers to
upgrading rather than purchasing new machinery, we multiply
this cost by a discount factor of 10%.

Strategy 7 (redundant suppliers) fixed cost is assessed as the
coordination costs for adding an additional supplier. This cost is
estimated by using the average supply management operating
expenses per shipment value (ES) from the CAPS Research
Data, which includes all the supply management group’s salary-
and payroll-related expenses (e.g., FICA, benefits); allocated
expenses (e.g., space, facilities, equipment, utilities, telecommu-
nications, information technology, etc.); and unallocated
expenses (controllable expenses incurred such as travel, training,
materials, and supplies). This cost is then multiplied by the simu-
lated company’s baseline value of shipments for full simulation
run (FVS).

6

http://www.census.gov/manufacturing/capacity/
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